scholarly journals Efficacy of silver and gold nanoparticles obtained from vermiwash: In vitro study on antimicrobial and antidiabetic activities

2021 ◽  
Vol 13 (4) ◽  
pp. 1317-1325
Author(s):  
Latha Rathinam ◽  
S. P. Sevarkodiyone ◽  
J. Pandiarajan

Emerging nanobiotechnology has provided innovative techniques to synthesize nanoparticles through biological methods to explore the potentialities of biological sources like phytoextracts, microbes, animal secretions and excretion. This research studies the potential of vermiwash to synthesize the silver and gold nanoparticles and evaluate its in vitro effect of antimicrobial   and antidiabetic activities. The characterization of the nanoparticles was analyzed through various techniques. Ultraviolet (UV)-Visible spectroscopy showed the maximum absorption spectrum at 413 nm for silver and 541 nm for gold nanoparticles. Fourier transform infrared spectroscopy (FTIR) revealed the reducing agent involved in nanoparticles synthesis. Scanning electron microscope (SEM) images revealed the size of the silver and gold nanoparticles as 24 nm and 50 nm, respectively. Energy dispersive X-ray (EDAX) analysis revealed the elemental composition of the synthesized nanoparticles. X-ray diffraction (XRD) analysis confirmed the crystalline nature of the nanoparticles that displayed the preferential orientation of the crystals toward the (111) plane.  Antimicrobial activity was assessed using the resazurin assay method.  A minimum inhibitory concentration (MIC) of less than 7.8 µg was observed in Staphylococcus aureus and Klebsiella pneumoniae. In the antifungal activity, MIC at 250 µg was noted in Mucor sp. and Candida albicans. Antidiabetic activity was assessed by α-amylase and α-glucosidase inhibitory assay. IC50 of α-amylase and α-glucosidase activity of the silver nanoparticles was noted as 218 and 221 µg/mL, respectively. IC 50 value for the enzymatic assay dose-dependently confirmed the effect. Conclusively biosynthesized nanoparticles from vermiwash showed potential efficiency of antibacterial, antifungal and antidiabetic activities.

2020 ◽  
Author(s):  
ANJANA DESAI ◽  
Swagata Roy ◽  
Joyita Banerjee ◽  
Brajesh Pandey ◽  
Neeru Bhagat

2021 ◽  
Author(s):  
Alessia Tudda ◽  
Elisabetta Donzelli ◽  
Gabriella Nicolini ◽  
Sara Semperboni ◽  
Mario Bossi ◽  
...  

2017 ◽  
Vol 51 (6) ◽  
pp. 554-567 ◽  
Author(s):  
Lívia P. Comar ◽  
Beatriz M. Souza ◽  
Luana P. Al-Ahj ◽  
Jessica Martins ◽  
Larissa T. Grizzo ◽  
...  

This in vitro study aimed to evaluate the action of TiF4 on sound and carious bovine and human enamel. Sound (S) and pre-demineralised (DE) bovine and human (primary and permanent) enamel samples were treated with TiF4 (pH 1.0) or NaF varnishes (pH 5.0), containing 0.95, 1.95, or 2.45% F for 12 h. The enamel surfaces were analysed using SEM-EDX (scanning electron microscopy/energy-dispersive X-ray spectroscopy) (n = 10, 5 S and 5 DE) and KOH-soluble fluoride was quantified (n = 20, 10 S and 10 DE). Hydroxyapatite powder produced by precipitation method was treated with the corresponding fluoride solutions for 1 min (n = 2). The formed compounds were detected using X-ray diffraction (XRD). All TiF4 varnishes produced a coating layer rich in Ti and F on all types of enamel surface, with micro-cracks in its extension. TiF4 (1.95 and 2.45% F) provided higher fluoride deposition than NaF, especially for bovine enamel (p < 0.0001). It also induced a higher fluoride deposition on DE samples compared to S samples (p < 0.0001), except for primary enamel. The Ti content was higher for bovine and human primary enamel than human permanent enamel, with some differences between S and DE. The XRD analysis showed that TiF4 induced the formation of new compounds such as CaF2, TiO2, and Ti(HPO4)2·H2O. In conclusion, TiF4 (>0.95% F) interacts better, when compared to NaF, with bovine and human primary enamel than with human permanent enamel. TiF4 provoked higher F deposition compared to NaF. Carious enamel showed higher F uptake than sound enamel by TiF4 application, while Ti uptake was dependent on the enamel condition and origin.


2017 ◽  
Vol 91 ◽  
pp. 567-580 ◽  
Author(s):  
Partha P. Dutta ◽  
Manobjyoti Bordoloi ◽  
Kabita Gogoi ◽  
Sonali Roy ◽  
Bardwi Narzary ◽  
...  

Author(s):  
Ahmad Almehmadi

Abstract The re-use of healing abutments (HAs) has become common practice in implant dentistry for economic concerns and the aim of this in-vitro study was to assess the effect of sodium hypochlorite (NaOCl) in decontamination of HAs. 122 HAs (Used and sterilized n=107; New n=15) were procured from 3 centers, of which 3 samples were discarded due to perforation in sterilization pouch.  For sterility assessment, the used HAs (n=80) were cultured in Brain Heart Infusion Broth (BHI) and Potato Dextrose Agar (PDA), bacterial isolates were identified in 7 samples. Also, 24 used HAs were stained with Phloxine B, photographed and compared to new HAs (n=5). Scanning electron microscope (SEM) assessed the differences between the two sets of HAs, following which the 7 contaminated HAs along with 24 used HAs from staining experiment (Total=31) were subsequently treated with sodium hypochlorite (NaOCl) and SEM images were observed. About 8.75% of HAs tested positive in bacterial culture; Streptococcus sanguis, Dermabacter hominis, Staphylococcus haemolyticus, and Aspergillus species were isolated. Phloxine B staining was positive for used and sterilized HAs when compared to controls. The SEM images revealed deposits in the used HAs and although treatment with NaOCl eliminated the contamination of cultured HAs, the SEM showed visible debris in the HA thread region. This in-vitro study concluded that SEM images showed debris in used HAs at screw-hole and thread regions even though they tested negative in bacterial culture. The treatment with NaOCl of used HAs showed no bacterial contamination but the debris was observed in SEM images. Future studies on the chemical composition, biological implications, and clinical influence is warranted before considering the reuse of HAs.


2018 ◽  
Vol 14 (4) ◽  
pp. 329-334
Author(s):  
Ahmad Shanei ◽  
Neda Attaran ◽  
Marziyeh Mirzaeiyan ◽  
Mohammad Reza Salamat ◽  
Hossein Hejazi

Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 365
Author(s):  
Seon-Hee Shin ◽  
Hyung-Seog Yu ◽  
Jung-Yul Cha ◽  
Jae-Sung Kwon ◽  
Chung-Ju Hwang

The accurate expression of bracket prescription is important for successful orthodontic treatment. The aim of this study was to evaluate the accuracy of digital scan images of brackets produced by four intraoral scanners (IOSs) when scanning the surface of the dental model attached with different bracket materials. Brackets made from stainless steel, polycrystalline alumina, composite, and composite/stainless steel slot were considered, which have been scanned from four different IOSs (Primescan, Trios, CS3600, and i500). SEM images were used as references. Each bracket axis was set in the reference scan image, and the axis was set identically by superimposing with the IOS image, and then only the brackets were divided and analyzed. One-way analysis of variance (ANOVA) was used to compare the differences. The difference between the manufacturer’s nominal torque and bracket slot base angle was 0.39 in SEM, 1.96 in Primescan, 2.04 in Trios, and 5.21 in CS3600 (p < 0.001). The parallelism, which is the difference between the upper and lower angles of the slot wall, was 0.48 in SEM, 7.00 in Primescan, 5.52 in Trios, 6.34 in CS3600, and 23.74 in i500 (p < 0.001). This study evaluated the accuracy of the bracket only, and it must be admitted that there is some error in recognizing slots through scanning in general.


2021 ◽  
Vol 22 (7) ◽  
pp. 3691
Author(s):  
Oliver Schmutzler ◽  
Sebastian Graf ◽  
Nils Behm ◽  
Wael Y. Mansour ◽  
Florian Blumendorf ◽  
...  

Quantitative cellular in vitro nanoparticle uptake measurements are possible with a large number of different techniques, however, all have their respective restrictions. Here, we demonstrate the application of synchrotron-based X-ray fluorescence imaging (XFI) on prostate tumor cells, which have internalized differently functionalized gold nanoparticles. Total nanoparticle uptake on the order of a few hundred picograms could be conveniently observed with microsamples consisting of only a few hundreds of cells. A comparison with mass spectroscopy quantification is provided, experimental results are both supported and sensitivity limits of this XFI approach extrapolated by Monte-Carlo simulations, yielding a minimum detectable nanoparticle mass of just 5 pg. This study demonstrates the high sensitivity level of XFI, allowing non-destructive uptake measurements with very small microsamples within just seconds of irradiation time.


Sign in / Sign up

Export Citation Format

Share Document