scholarly journals Shape Analysis of the Elastic Deformation Region throughout the Axi-Symmetric Wire Drawing Process of ETP Grade Copper

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4713
Author(s):  
Paweł Strzępek ◽  
Andrzej Mamala ◽  
Małgorzata Zasadzińska ◽  
Grzegorz Kiesiewicz ◽  
Tadeusz Antoni Knych

The wire drawing process is commonly perceived as one of the best studied metal forming processes in almost every aspect; however, when considering elastic deformation, researchers usually focus on the uniaxial tensile forces after the material exits the drawing die and not the elastic deformation region before entering the drawing die, even though it may have a significant impact on the strength parameters and the nature of metal flow inside the drawing die. The aim of this research is to theoretically and experimentally identify the deformation in the elastic region and to further link the shape of this region and the values of stress occurring in it with the geometrical parameters of the drawing process and assess its impact on its strength parameters. In order to achieve the assumed goals, numerical analyses using the finite element method and experimental research on the drawing process in laboratory conditions were carried out using Vickers hardness tests and resistance strain gauges measuring deformation in stationary and non-stationary conditions. The obtained results indicate that the shape and the extent of the region of elastic deformations generated in the material before the plastic deformation region during the drawing process depends on the applied deformation coefficient and stationarity of the process.

2018 ◽  
Vol 190 ◽  
pp. 04004
Author(s):  
Markus Baumann ◽  
Alexander Graf ◽  
René Selbmann ◽  
Katrin Brömmelhoff ◽  
Verena Kräusel ◽  
...  

Torsion bars are used in automotive engineering as well as in other industrial applications. Such elements are produced by bending cold drawn wires. In conventional drawing processes tensile residual stresses occur near the surface of the wire. Small bending radii, which are required in limited assembly spaces, result in component failure due to reduced formability. Additional operations such as heat treatment or shot peening are necessary to influence the residual stress of the wire and to improve the dynamic stability of the torsion bar. The aim of the research is to reduce tensile residual stresses near the surface of the wire in order to eliminate process steps and to enhance formability. Therefore, a forming technology is developed by using a modified drawing die geometry on the basis of gradation extrusion. Finite element simulation is used to investigate the influences of element geometry, number of elements and process modification on the resulting residual stresses after wire drawing of a steel alloy. The results are evaluated and compared with the conventional wire drawing process. Furthermore, the requirements for the design of an experimental test device will be outlined as well as the measurement of the residual stresses by using X-ray diffraction.


2021 ◽  
Vol 1037 ◽  
pp. 203-208
Author(s):  
Valery V. Alisin ◽  
Michael A. Borik ◽  
Alexei V. Kulebyakin ◽  
Elena E. Lomonova ◽  
Dmitriy M. Gutsev

Materials based on partially stabilized zirconia (ceramics and crystals) are distinguished by high values of mechanical strength, crack resistance, hardness, corrosion resistance, low coefficient of friction when operating in tandem with most metals, which makes them promising materials for a wide tribotechnical application in highly loaded friction units. An example of such a unit is the die mechanism, which is an integral part of the drawing die tool in the cable industry. These hard precision tools (drawing dies or wire dies) actually determine the ultimate success in the wire drawing process.


2013 ◽  
Vol 873 ◽  
pp. 223-227
Author(s):  
Pei Long Song ◽  
Xue Feng Yang ◽  
Shou Ren Wang ◽  
Li Ying Yang

Al2O3-TiC/Al2O3-TiC-CaF2laminated ceramic drawing die used for drawing experiment was prepared by vacuum hot pressing method. The finite element models of 45#-steel and wire drawing die were built by SolidWorks and simulation analysis of drawing process were done by FEM simulation software. The axial stress, strain distribution and drawing force during deformation were got. The microstructure of the worn drawing die was observed by scanning electron microscopy (SEM) and the composition was investigated by energy dispersive X-Ray spectroscopy (EDS). Results show that the wear conditions of Al2O3-TiC-CaF2material layers were serious than Al2O3-TiC. And because of the dragging effect, solid lubricating films formed in Al2O3-TiC-CaF2material layers covered on Al2O3-TiC material layers. The drawing die owes self-lubricating performance. Without considering friction effective on invariable zone of the drawing die, the simulation result of drawing force was smaller than the measurement value.


2016 ◽  
Vol 246 ◽  
pp. 183-188
Author(s):  
Dariusz Halaczek

Limit stress diagram by Pelczyński was constructed in the coordinates σm - σH (σm - average stress for the process, σH - stress according to the Huber hypothesis) based on the hypothesis Huber - de Saint Venant and is consistent connection between the two hypotheses. This diagram allows for presentation the dangerous states of stresses for arbitrary stress state so plane and space (biaxial and triaxial). It also allows for the analysis of stress states occurring in various processes of plastic forming. To determine the state stresses occurring in the technological process starts from the components of the plastic deformation. In the case of a wire drawing process with a circular section in the inlet area of the die there is equality of deformation φ2 = φ3 and the equality of stress σ2 = σ3 (which is uniform biaxial compression), while in a outlet of the die there is a uniaxial tensile σ1, which cannot achieve a value equal to σp (yield strength), since in this case the wire could be deformed outside the die.The aim of this study was to construct the Pelczynski diagram in such a way to show on the example of brass wire M63, the course of the stresses in the drawing process.The research program included:- Realization of the drawing processes in order to obtain samples of varying degrees strengthening,- Determination on the basis of tensile strength the properties Rm, Rp0,2 and cohesive strength of R0 for varying degrees of strengthening,- Determine the influence of cold deformation for the course of curve of the yield strength,- Constructing a diagram of drawing process on a background of the diagram of yield strength in this process.


2010 ◽  
Vol 154-155 ◽  
pp. 588-592 ◽  
Author(s):  
Zi Chao Lin ◽  
Fang Hong Sun ◽  
Zhi Ming Zhang ◽  
He Sheng Shen ◽  
Song Shou Guo

Diamond-coated drawing dies are considered as ideal drawing dies for their unique characteristics, such as high hardness, wear resistance and low friction. In order to optimize the parameters of diamond coated drawing dies, this study conducts a finite element method (FEM) simulation to calculate the von Mises stresses distribution on the interior-hole surfaces of diamond coated drawing die during the copper wire drawing process, and then refines the diamond coated drawing dies based on the simulation results. Furthermore, the drawing performance of the optimized diamond coated drawing die is examined in a real production of drawing copper wires, and the results show that its working lifetime increase by a factor of 12 comparing with the conventional tungsten carbide drawing die.


Author(s):  
I. G. Shubin ◽  
A. A. Kurkin

During manufacturing nuts of increased height, a problem of obtaining correct cylindrical form of the hole for thread and overall geometrical parameters arises. To solve the problem it is necessary to know regularity of the blank forming process. Results of the study of a technological process of high hexahedral nuts forming presented. The nuts were M18 of 22 mm height, M16 of 19 mm height and M12 of normal height 10 mm according to GOST 5915–70, accuracy class B, steel grade 10 according to GOST 10702–78. The volumetric stamping was accomplished at the five-position automatic presses of АА1822 type. It was determined, that unevenness of the metal flow in the process of plastic deformation of blanks of increased height nuts was caused by different stress conditions by their sections. To simulate the mode of deformation, the program complex QForm-3D was chosen. The complex ensured to forecast with necessary accuracy the metal flow in a blank, as well as to define the deformation force and arising stress in the working instrument. The simulation showed the presence of regularity between preliminary formed buffle and deviation of dimensions and form of a blank wall after its finishing piercing, which can be expressed by a nonlinear dependence. The limit values of the relative height of the buffle С/D = 0.56–0.588 defined, exceeding which will result in rejection of the finished product. Accounting the limit values of the relative height of the buffle will enable to correct a mode of technological operations and technological instruments at stamping of high hexahedral nuts.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3993
Author(s):  
Thanh Trung Do ◽  
Pham Son Minh ◽  
Nhan Le

The formability of the drawn part in the deep drawing process depends not only on the material properties, but also on the equipment used, metal flow control and tool parameters. The most common defects can be the thickening, stretching and splitting. However, the optimization of tools including the die and punch parameters leads to a reduction of the defects and improves the quality of the products. In this paper, the formability of the camera cover by aluminum alloy A1050 in the deep drawing process was examined relating to the tool geometry parameters based on numerical and experimental analyses. The results showed that the thickness was the smallest and the stress was the highest at one of the bottom corners where the biaxial stretching was the predominant mode of deformation. The problems of the thickening at the flange area, the stretching at the side wall and the splitting at the bottom corners could be prevented when the tool parameters were optimized that related to the thickness and stress. It was clear that the optimal thickness distribution of the camera cover was obtained by the design of tools with the best values—with the die edge radius 10 times, the pocket radius on the bottom of the die 5 times, and the punch nose radius 2.5 times the sheet thickness. Additionally, the quality of the camera cover was improved with a maximum thinning of 25% experimentally, and it was within the suggested maximum allowable thickness reduction of 45% for various industrial applications after optimizing the tool geometry parameters in the deep drawing process.


2012 ◽  
Vol 591-593 ◽  
pp. 850-853
Author(s):  
Huai Xing Wen ◽  
Yong Tao Yang

Drawing Dies meter A / D acquisition module will be collected from the mold hole contour data to draw a curve in Matlab. According to the mold pore structure characteristics of the curve, the initial cut-off point of each part of contour is determined and iteratived optimization to find the best cut-off point, use the least squares method for fitting piecewise linear and fitting optimization to find the function of the various parts of the curve function, finally calculate the pass parameters of drawing mode. Parameters obtained compare with the standard mold, both of errors are relatively small that prove the correctness of the algorithm. Also a complete algorithm flow of pass parameters is designed, it can fast and accurately measure the wire drawing die hole parameters.


Sign in / Sign up

Export Citation Format

Share Document