Features of Mechanical Treatment of Zirconia Crystals when Manufacturing Dies

2021 ◽  
Vol 1037 ◽  
pp. 203-208
Author(s):  
Valery V. Alisin ◽  
Michael A. Borik ◽  
Alexei V. Kulebyakin ◽  
Elena E. Lomonova ◽  
Dmitriy M. Gutsev

Materials based on partially stabilized zirconia (ceramics and crystals) are distinguished by high values of mechanical strength, crack resistance, hardness, corrosion resistance, low coefficient of friction when operating in tandem with most metals, which makes them promising materials for a wide tribotechnical application in highly loaded friction units. An example of such a unit is the die mechanism, which is an integral part of the drawing die tool in the cable industry. These hard precision tools (drawing dies or wire dies) actually determine the ultimate success in the wire drawing process.

2010 ◽  
Vol 154-155 ◽  
pp. 588-592 ◽  
Author(s):  
Zi Chao Lin ◽  
Fang Hong Sun ◽  
Zhi Ming Zhang ◽  
He Sheng Shen ◽  
Song Shou Guo

Diamond-coated drawing dies are considered as ideal drawing dies for their unique characteristics, such as high hardness, wear resistance and low friction. In order to optimize the parameters of diamond coated drawing dies, this study conducts a finite element method (FEM) simulation to calculate the von Mises stresses distribution on the interior-hole surfaces of diamond coated drawing die during the copper wire drawing process, and then refines the diamond coated drawing dies based on the simulation results. Furthermore, the drawing performance of the optimized diamond coated drawing die is examined in a real production of drawing copper wires, and the results show that its working lifetime increase by a factor of 12 comparing with the conventional tungsten carbide drawing die.


2012 ◽  
Vol 591-593 ◽  
pp. 850-853
Author(s):  
Huai Xing Wen ◽  
Yong Tao Yang

Drawing Dies meter A / D acquisition module will be collected from the mold hole contour data to draw a curve in Matlab. According to the mold pore structure characteristics of the curve, the initial cut-off point of each part of contour is determined and iteratived optimization to find the best cut-off point, use the least squares method for fitting piecewise linear and fitting optimization to find the function of the various parts of the curve function, finally calculate the pass parameters of drawing mode. Parameters obtained compare with the standard mold, both of errors are relatively small that prove the correctness of the algorithm. Also a complete algorithm flow of pass parameters is designed, it can fast and accurately measure the wire drawing die hole parameters.


2018 ◽  
Vol 190 ◽  
pp. 04004
Author(s):  
Markus Baumann ◽  
Alexander Graf ◽  
René Selbmann ◽  
Katrin Brömmelhoff ◽  
Verena Kräusel ◽  
...  

Torsion bars are used in automotive engineering as well as in other industrial applications. Such elements are produced by bending cold drawn wires. In conventional drawing processes tensile residual stresses occur near the surface of the wire. Small bending radii, which are required in limited assembly spaces, result in component failure due to reduced formability. Additional operations such as heat treatment or shot peening are necessary to influence the residual stress of the wire and to improve the dynamic stability of the torsion bar. The aim of the research is to reduce tensile residual stresses near the surface of the wire in order to eliminate process steps and to enhance formability. Therefore, a forming technology is developed by using a modified drawing die geometry on the basis of gradation extrusion. Finite element simulation is used to investigate the influences of element geometry, number of elements and process modification on the resulting residual stresses after wire drawing of a steel alloy. The results are evaluated and compared with the conventional wire drawing process. Furthermore, the requirements for the design of an experimental test device will be outlined as well as the measurement of the residual stresses by using X-ray diffraction.


Author(s):  
P Tiernan ◽  
M T Hillery

Dieless wire drawing is the process of causing a reduction in a wire diameter without the use of conventional wire drawing dies. The wire, axially loaded with a force, is heated to an elevated temperature to initiate plastic deformation. The mechanics of this novel drawing process and a theoretical analysis of the deformation are discussed in this paper. The results of an experimental drawing programme carried out with mild steel wire at temperatures between 400 and 900°C are also presented. Mathematical models were developed and used to describe and predict the process deformation and both the stress and temperature distribution profile along the workpiece. A machine was designed and manufactured to facilitate an experimental programme of dieless drawing. The machine permitted continuous drawing of wire, while the reduction ratio, drawing load and temperature were automatically controlled using a personal computer. A finite element (FE) model of the wire was developed, and the results obtained from the FE analysis show good agreement with those obtained from both the experimental work and the mathematical modelling. Results obtained confirm that a complicated interdependence of the process parameters exists during the dieless drawing process.


2012 ◽  
Vol 217-219 ◽  
pp. 1022-1027
Author(s):  
Liu Jin Bian ◽  
Zi Chao Lin ◽  
Fang Hong Sun ◽  
Song Shou Guo

Abstract:The shaped-wire drawing dies are used more and more popularly in the metal product industry for several advantages of locked structure. In present investigation, a layer of CVD diamond film is deposited on the interior-hole surface of shaped-wire drawing die using a hot filament chemical vapor deposition (HFCVD) method, followed by a surface polishing process, aiming at further prolonging its working lifetime of shaped-wire drawing dies and improving the surface quality of produced wires. The scanning electron microscopy (SEM), surface profiler and Raman spectroscopy are adopted to present the characterization of both as-deposited CVD diamond films before and after polishing. Furthermore, the performance of as-fabricated CVD diamond coated drawing dies is examined in the practical production process. The results show that as-deposited CVD diamond films are homogeneous and the working surface is smoother after polishing. Comparing with the conventional shaped drawing dies, the working lifetime of the diamond coated shaped-wire drawing dies can be increased by a factor of above 10, and the shaped wires with higher surface quality can be obtained.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3923 ◽  
Author(s):  
Sang-Kon Lee ◽  
In-Kyu Lee ◽  
Sung-Min Lee ◽  
Sung-Yun Lee

In the multi-pass wire drawing process, the diameter of a wire is decreased by continuously passing it through progressively smaller drawing dies. Although the deformation depends on the process variables, in most wire drawing processes, the wire deformation is concentrated on the surface by its direct contact with the drawing dies, causing a nonlinear distribution of radial direction effective strain from the center to the surface. In this study, a new model for predicting this effective strain in two-pass drawn wire was derived based on the upper bound method, and a finite element analysis and drawing experiment were conducted to validate its effectiveness. The proposed model offers a promising approach to determining and thus controlling the strain in multi-pass drawn wire.


2013 ◽  
Vol 873 ◽  
pp. 223-227
Author(s):  
Pei Long Song ◽  
Xue Feng Yang ◽  
Shou Ren Wang ◽  
Li Ying Yang

Al2O3-TiC/Al2O3-TiC-CaF2laminated ceramic drawing die used for drawing experiment was prepared by vacuum hot pressing method. The finite element models of 45#-steel and wire drawing die were built by SolidWorks and simulation analysis of drawing process were done by FEM simulation software. The axial stress, strain distribution and drawing force during deformation were got. The microstructure of the worn drawing die was observed by scanning electron microscopy (SEM) and the composition was investigated by energy dispersive X-Ray spectroscopy (EDS). Results show that the wear conditions of Al2O3-TiC-CaF2material layers were serious than Al2O3-TiC. And because of the dragging effect, solid lubricating films formed in Al2O3-TiC-CaF2material layers covered on Al2O3-TiC material layers. The drawing die owes self-lubricating performance. Without considering friction effective on invariable zone of the drawing die, the simulation result of drawing force was smaller than the measurement value.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4713
Author(s):  
Paweł Strzępek ◽  
Andrzej Mamala ◽  
Małgorzata Zasadzińska ◽  
Grzegorz Kiesiewicz ◽  
Tadeusz Antoni Knych

The wire drawing process is commonly perceived as one of the best studied metal forming processes in almost every aspect; however, when considering elastic deformation, researchers usually focus on the uniaxial tensile forces after the material exits the drawing die and not the elastic deformation region before entering the drawing die, even though it may have a significant impact on the strength parameters and the nature of metal flow inside the drawing die. The aim of this research is to theoretically and experimentally identify the deformation in the elastic region and to further link the shape of this region and the values of stress occurring in it with the geometrical parameters of the drawing process and assess its impact on its strength parameters. In order to achieve the assumed goals, numerical analyses using the finite element method and experimental research on the drawing process in laboratory conditions were carried out using Vickers hardness tests and resistance strain gauges measuring deformation in stationary and non-stationary conditions. The obtained results indicate that the shape and the extent of the region of elastic deformations generated in the material before the plastic deformation region during the drawing process depends on the applied deformation coefficient and stationarity of the process.


Sign in / Sign up

Export Citation Format

Share Document