scholarly journals Compressive Behavior of Al-TiB2 Composite Foams Fabricated under Increased Pressure

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5112
Author(s):  
Yang Yu ◽  
Zhuokun Cao ◽  
Jiaqi Wang ◽  
Ganfeng Tu ◽  
Yongliang Mu

The application of increased pressure was used as a strategy to investigate the effect of different cell structures on the mechanical properties of Al-TiB2 composite foams. In situ Al-xTiB2 (x = 5, 10 wt.%) composites were foamed under three different pressures (0.1 MPa, 0.24 MPa, 0.4 MPa) through the liquid melt route. The macro-structure of the composite foams was analyzed in terms of cell size distribution measured by X-ray microcomputed tomography (micro-CT). It was found that the mean cell size decreases, and the cell size distribution range narrows with increasing pressure. Uniaxial compression tests revealed that the stress fluctuation (Rsd) of 10TiB2 foams is larger than that of 5TiB2 foams under the same pressure. Moreover, cell size refinement causes the simultaneous deformation of multi-layer cells, which leads to an enhancement in the energy absorption efficiency and specific energy absorption. The comparison of experimental data with theoretical predictions (G&A model) is discussed.

Author(s):  
Zsuzsanna Márton ◽  
Bianka Csitári ◽  
Tamas Felfoldi ◽  
Anna J Szekely ◽  
Attila Szabo

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 713-723
Author(s):  
Wei Gong ◽  
Tuan-Hui Jiang ◽  
Xiang-Bu Zeng ◽  
Li He ◽  
Chun Zhang

AbstractThe effects of the cell size and distribution on the mechanical properties of polypropylene foam were simulated and analyzed by finite element modeling with ANSYS and supporting experiments. The results show that the reduced cell size and narrow size distribution have beneficial influences on both the tensile and impact strengths. Decreasing the cell size or narrowing the cell size distribution was more effective for increasing the impact strength than the tensile strength in the same case. The relationship between the mechanical properties and cell structure parameters has a good correlation with the theoretical model.


2014 ◽  
Vol 13 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Anna Czerednik ◽  
Marco Busscher ◽  
Gerco C. Angenent ◽  
Ruud A. de Maagd

1973 ◽  
Vol 30 (2) ◽  
pp. 143-155 ◽  
Author(s):  
A. Prakash ◽  
Liv Skoglund ◽  
Britt Rystad ◽  
Arne Jensen

An extended exponential growth phase and a higher maximum population characterized growth of planktonic algae in a dialysis system compared with that in a batch system. Algal cells grown in a dialysis culture had higher chlorophyll content and a larger average cell size than those grown in a batch culture. In both types of culture, changes in cell-size distribution were related to the phases of the growth cycle with maximum cell-size during the stationary phase. Various interactions of the component reactions of photosynthesis leading to changes in growth pattern and cell-size distribution are discussed.


Sign in / Sign up

Export Citation Format

Share Document