scholarly journals Experimental-numerical studies of the effect of cell structure on the mechanical properties of polypropylene foams

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 713-723
Author(s):  
Wei Gong ◽  
Tuan-Hui Jiang ◽  
Xiang-Bu Zeng ◽  
Li He ◽  
Chun Zhang

AbstractThe effects of the cell size and distribution on the mechanical properties of polypropylene foam were simulated and analyzed by finite element modeling with ANSYS and supporting experiments. The results show that the reduced cell size and narrow size distribution have beneficial influences on both the tensile and impact strengths. Decreasing the cell size or narrowing the cell size distribution was more effective for increasing the impact strength than the tensile strength in the same case. The relationship between the mechanical properties and cell structure parameters has a good correlation with the theoretical model.

2020 ◽  
pp. 026248932093032
Author(s):  
Jinwei Chen ◽  
Ling Yang ◽  
Dahua Chen ◽  
Qunshan Mai ◽  
Meigui Wang ◽  
...  

Microcellular polylactic acid (PLA) foams with various cell size and cell morphologies were prepared using supercritical carbon dioxide (sc-CO2) solid-state foaming to investigate the relationship between the cell structure and mechanical properties. Constrained foaming was used and a wide range of cell structures with a constant porosity of ∼75% by tuning saturation pressure (8–24 MPa) was developed. Experiments varying the saturation pressure while holding other variables’ constant show that the mean cell size and the mean cell wall thickness decreased, while the cell density and the open porosity increased with increase of pressure. Tensile modulus of PLA foams decreased with increasing the saturation pressure, but the specific tensile modulus of PLA foams was still 15–80% higher than that of solid PLA. Tensile strength and elongation at break first increased with increasing saturation pressure up to 16 MPa and then decreased with further increasing saturation pressure (20 MPa and 24 MPa) at which opened-cell structure produced. Compressive modulus, compressive strength, and compressive yield stress also followed the same variation trend. The results indicated that not only cell size plays an important role in properties of PLA foams but also cell morphology can influence these properties significantly.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-Nian Yang ◽  
Zi-Quan Li ◽  
Jin-Song Liu

AbstractThe short glass fiber (SGF)/polypropylene (PP) and ethylene-1-octene copolymer (POE)/SGF/PP foam composites were prepared by extrusion and subsequent post-foaming process in designed dies. The compatilizers, maleic anhydride grafted PP (PP-g-MAH) and maleic anhydride grafted POE (POE-g- MAH), were employed to improve the performance of the foam composites, respectively, and their influences on the cellular structures, interfacial morphologies and mechanical properties of PP foam composites were investigated. It was found that the compatilizers resulted in modified PP foam composites characterized by uniform cell size distribution, reduced cell size and increased cell density except POE/SGF/PP with POE-g-MAH. The obvious enhanced SGF-matrix interfacial bonding was observed from the SEM examination, and POE-g-MAH also facilitated the compatibility between elastomeric particles and matrix. Testing results indicated that, by the introduction of PP-g-MAH or POE-g-MAH, the mechanical properties of PP foam composites were significantly improved, and it seemed that the PP-g-MAH was more effective in strengthening the flexural and compressive strength while POE-g-MAH greatly increased the impact toughness.


2016 ◽  
Vol 54 (2) ◽  
pp. 217-233 ◽  
Author(s):  
Renan Demori ◽  
Eveline Bischoff ◽  
Ana P de Azeredo ◽  
Susana A Liberman ◽  
Joao Maia ◽  
...  

Studies about polypropylene nanocomposite foams are receiving attention because nanoparticles can change physical and mechanical properties, as well as improve foaming behavior in terms of homogeneous cell structure, cell density, and void fraction. In this research, the foaming behavior of polypropylene, polypropylene/long-chain branched polypropylene (LCBPP) 100/20 blend, and polypropylene/LCBPP/halloysite nanocomposites with 0.5 and 3 parts per hundred of resin (phr) is studied. The LCBPP was used to improve the rheological properties of polypropylene/LCBPP blend, namely the degree of strain-hardening. Transmission electron microscopy observation indicated that halloysite nanotube particles are well distributed in the matrix by aggregates. Subsequent foaming experiments were conducted using chemical blowing agent in injection-molding processing. Polypropylene foam exhibited high cell density and cell size as well as a collapsing effect, whereas the polypropylene/LCBPP blend showed a reduction of the void fraction and cell density compared to expanded polypropylene. Also, the blend showed reduction of the collapsing effect and increase of homogeneous cell size distribution. The introduction of a small amount of halloysite nanotube in the polypropylene/LCBPP blend improved the foaming behavior of the polypropylene, with a uniform cell structure distribution in the resultant foams. In addition, the cell density of the composite sample was higher than the polypropylene/LCBPP sample, having increased 82% and 136% for 0.5 and 3 phr of loaded halloysite nanotube, respectively. Furthermore, the presence of halloysite nanotube increased crystallization temperature (Tc) and slightly increased dynamic-mechanical properties measured by dynamic-mechanical thermal analysis. By increasing halloysite nanotube content to 3 phr, the insulating effect increased by 13% compared to polypropylene/LCBPP blend. For comparative purposes, the effect on foaming behavior of polypropylene/LCBPP was also investigated using talc microparticles.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 793
Author(s):  
Christian Bethke ◽  
Sandra A. Sanchez-Vazquez ◽  
Daniel Raps ◽  
Gökhan Bakis ◽  
Simon Bard ◽  
...  

The present study focuses on the processing and properties of epoxy foams by the use of CO2 blocked hardener N-aminoethylpiperazine (B-AEP) and different resins. Although some studies described the foaming with carbamates, little attention has been given to the interaction of resin properties (such as viscosity) on the foaming performance. Therefore, two resins, diglycidyl ether of bisphenol-A (DGEBA) and epoxy novolac (EN), as well as their 50:50 blend, were foamed with B-AEP and unblocked/blocked AEP hardener mixtures in a batch foaming process. Furthermore, the commercially available chemical blowing agent para-toluenesulfonyl hydrazide (TSH) was used as a benchmark for commonly used chemical blowing agents. The lowest density in this study was reached by the DGEBA+B-AEP system in the range of 215 kg/m3 with the drawback of an inhomogeneous cell structure and high cell size distribution. The best cell morphology and lowest cell size distribution was reached with the EN+15:85% unblocked:blocked hardener mixture, resulting in a density in the range of 394 kg/m3. A syntactic foam was achieved by a DGEBA+50:50% unblocked:blocked hardener mixture with a density of around 496 kg/m3. It was found that a higher viscosity of the resin lead to an increase in the density and a decrease in the cell size distribution range as a result of a closer expansion time window.


2020 ◽  
pp. 089270572097869
Author(s):  
Pezhman Rezaei ◽  
Mostafa Rezaei ◽  
Saeid Talebi ◽  
Amin Babaie

Cross-linked polyvinyl chloride (C-PVC) foams and their nanocomposite foams, containing Cloisite 30B nanoclays were prepared. The effects of compression molding pressure and time on the morphology and mechanical properties of different foams were studied. Increment of molding pressure led to higher apparent density, gel content, cell density, and expansion ratio, and wider cell size distribution, which improved the mechanical properties of the foams. Additionally, with the increasing of molding time, lower cell density and final expansion ratio, narrower cell size distribution, and higher gel content and mechanical properties could be obtained. Moreover, incorporation of Cloisite 30B nanoclay in a PVC matrix not only improved cellular microstructure and mechanical properties but also reduced water uptake ratios of nanocomposite foams.


Author(s):  
Zsuzsanna Márton ◽  
Bianka Csitári ◽  
Tamas Felfoldi ◽  
Anna J Szekely ◽  
Attila Szabo

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2531
Author(s):  
Rodion Kopitzky

Sugar beet pulp (SBP) is a residue available in large quantities from the sugar industry, and can serve as a cost-effective bio-based and biodegradable filler for fully bio-based compounds based on bio-based polyesters. The heterogeneous cell structure of sugar beet suggests that the processing of SBP can affect the properties of the composite. An “Ultra-Rotor” type air turbulence mill was used to produce SBP particles of different sizes. These particles were processed in a twin-screw extruder with poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) and fillers to granules for possible marketable formulations. Different screw designs, compatibilizers and the use of glycerol as a thermoplasticization agent for SBP were also tested. The spherical, cubic, or ellipsoidal-like shaped particles of SBP are not suitable for usage as a fiber-like reinforcement. In addition, the fineness of ground SBP affects the mechanical properties because (i) a high proportion of polar surfaces leads to poor compatibility, and (ii) due to the inner structure of the particulate matter, the strength of the composite is limited to the cohesive strength of compressed sugar-cell compartments of the SBP. The compatibilization of the polymer–matrix–particle interface can be achieved by using compatibilizers of different types. Scanning electron microscopy (SEM) fracture patterns show that the compatibilization can lead to both well-bonded particles and cohesive fracture patterns in the matrix. Nevertheless, the mechanical properties are limited by the impact and elongation behavior. Therefore, the applications of SBP-based composites must be well considered.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Haoliang Huang ◽  
Guang Ye

In this research, self-healing due to further hydration of unhydrated cement particles is taken as an example for investigating the effects of capsules on the self-healing efficiency and mechanical properties of cementitious materials. The efficiency of supply of water by using capsules as a function of capsule dosages and sizes was determined numerically. By knowing the amount of water supplied via capsules, the efficiency of self-healing due to further hydration of unhydrated cement was quantified. In addition, the impact of capsules on mechanical properties was investigated numerically. The amount of released water increases with the dosage of capsules at different slops as the size of capsules varies. Concerning the best efficiency of self-healing, the optimizing size of capsules is 6.5 mm for capsule dosages of 3%, 5%, and 7%, respectively. Both elastic modulus and tensile strength of cementitious materials decrease with the increase of capsule. The decreasing tendency of tensile strength is larger than that of elastic modulus. However, it was found that the increase of positive effect (the capacity of inducing self-healing) of capsules is larger than that of negative effects (decreasing mechanical properties) when the dosage of capsules increases.


2014 ◽  
Vol 13 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Anna Czerednik ◽  
Marco Busscher ◽  
Gerco C. Angenent ◽  
Ruud A. de Maagd

Sign in / Sign up

Export Citation Format

Share Document