scholarly journals Biochar and Hyperthermophiles as Additives Accelerate the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements during Composting

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5428
Author(s):  
Yanli Fu ◽  
Aisheng Zhang ◽  
Tengfei Guo ◽  
Ying Zhu ◽  
Yanqiu Shao

Sewage treatment plants are known as repositories of antibiotic resistance genes (ARGs). Adding biochar and inoculating with exogenous microbial agents are common ways to improve the quality of compost. However, little is known about the effects of these exogenous additives on the fate of ARGs during composting and the related mechanisms. In this study, municipal sludge was taken as the research object to study the ARG-removal effects of four composting methods: ordinary compost (CT), compost with hyperthermophiles (HT), compost with hyperthermophiles and 2.0% biochar (HT2C) and compost with hyperthermophiles and 5.0% biochar (HT5C). Real-time quantitative PCR (qPCR) and 16S rRNA high-throughput sequencing were conducted to analyze the ARGs, MGEs and bacterial community. After composting, the abundance of ARGs in CT was reduced by 72.7%, while HT, HT2C and HT5C were reduced by 80.7%, 84.3% and 84.8%, respectively. Treatments with different proportions of biochar added (HT2C, HT5C) had no significant effect on the abundance of ARGs. Network analysis showed that Firmicutes and Nitrospirae were positively associated with most ARGs and may be potential hosts for them. In addition, redundancy analysis further showed that the class 1 integrase gene (intI1), pH and organic carbon had a greater effect on ARGs. Our findings suggested that the combination of hyperthermophiles and biochar during the composting process was an effective way to control ARGs and mobile genetic elements (MGEs), thus inhibiting the spread and diffusion of ARGs in the environment and improving the efficiency of treating human and animal diseases.

Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 150 ◽  
Author(s):  
Inka M. Willms ◽  
Jingyue Yuan ◽  
Caterina Penone ◽  
Kezia Goldmann ◽  
Juliane Vogt ◽  
...  

Antibiotic-resistant pathogens claim the lives of thousands of people each year and are currently considered as one of the most serious threats to public health. Apart from clinical environments, soil ecosystems also represent a major source of antibiotic resistance determinants, which can potentially disseminate across distinct microbial habitats and be acquired by human pathogens via horizontal gene transfer. Therefore, it is of global importance to retrieve comprehensive information on environmental factors, contributing to an accumulation of antibiotic resistance genes and mobile genetic elements in these ecosystems. Here, medically relevant antibiotic resistance genes, class 1 integrons and IncP-1 plasmids were quantified via real time quantitative PCR in soils derived from temperate grasslands and forests, varying in land use over a large spatial scale. The generated dataset allowed an analysis, decoupled from regional influences, and enabled the identification of land use practices and soil characteristics elevating the abundance of antibiotic resistance genes and mobile genetic elements. In grassland soils, the abundance of the macrolide resistance gene mefA as well as the sulfonamide resistance gene sul2 was positively correlated with organic fertilization and the abundance of aac(6′)-lb, conferring resistance to different aminoglycosides, increased with mowing frequency. With respect to forest soils, the beta-lactam resistance gene blaIMP-12 was significantly correlated with fungal diversity which might be due to the fact that different fungal species can produce beta-lactams. Furthermore, except blaIMP-5 and blaIMP-12, the analyzed antibiotic resistance genes as well as IncP-1 plasmids and class-1 integrons were detected less frequently in forest soils than in soils derived from grassland that are commonly in closer proximity to human activities.


2016 ◽  
Vol 106 ◽  
pp. 62-70 ◽  
Author(s):  
Junya Zhang ◽  
Qianwen Sui ◽  
Juan Tong ◽  
Chulu Buhe ◽  
Rui Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document