scholarly journals High-Performance Method of Recovery of Metals from EAF Dust—Processing without Solid Waste

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6061
Author(s):  
Stanisław Małecki ◽  
Krzysztof Gargul ◽  
Marek Warzecha ◽  
Grzegorz Stradomski ◽  
Artur Hutny ◽  
...  

A highly effective method of the processing of steelmaking dust in an arc-resistant furnace has been presented. The aim of the research was to investigate the possibility of processing steelmaking dust in terms of waste minimization and selective recovery of valuable components. For this purpose, an electric arc resistance furnace was used. Granulated steelmaking dust with reducer (coal dust) was the input material. The products of the process are zinc oxide, iron alloy and slag, with properties meeting high ecological requirements. The technology does not generate solid waste. Zinc recovery is over 99% and iron recovery over 98%. The content of heavy metals (Zn + Pb + Cu) in glassy slag is below 0.2%, which ensures very low leachability.

Author(s):  
Mamdouh Omran ◽  
Timo Fabritius ◽  
Yaowei Yu ◽  
Eetu-Pekka Heikkinen ◽  
Guo Chen ◽  
...  

Abstract Recently, microwave energy has attracted increasing interest for accelerating thermal reactions. This study investigated the impact of microwave heating on the zinc recovery rate from electric arc furnace (EAF) and chromium converter (CRC) dusts. The results indicated that microwave heating required a lower temperature to recover zinc from EAF and CRC dusts compared with that in conventional thermal heating. For CRC dust, zinc recovery rates of 37.84% and 97.43% were obtained with conventional and microwave heating, respectively, at 850 °C. For EAF dust, zinc recovery rates of 79.88% and 98.20% were obtained with conventional and microwave heating, respectively, at 850 °C. The improved zinc recovery in this study was concluded to results from the rapidity of microwave heating and the interactions between the electromagnetic microwave field and the molecules of heated materials. Graphical Abstract


2020 ◽  
Vol 5 (4) ◽  
pp. 202-209
Author(s):  
Alexander Topal ◽  
◽  
Iryna Holenko ◽  
Luidmyla Haponych ◽  
◽  
...  

For the municipal solid waste (MSW) to be used in a proper way, it is necessary to implement clean technologies capable of thermal treatment of MSW and RDF in order to produce heat and electricity while meeting current ecological requirements. Nowadays, a number of technologies for MSW/RDF thermal treating are being used worldwide. Among them, the most proven technologies, applicable for industrial introduction, have been considered while analyzing their advantages/ disadvantages accounting for local conditions of Ukraine.


1999 ◽  
Vol 39 (10-11) ◽  
pp. 289-295
Author(s):  
Saleh Al-Muzaini

The Shuaiba Industrial Area (SIA) is located about 50 km south of Kuwait City. It accommodates most of the large-scale industries in Kuwait. The total area of the SIA (both eastern and western sectors) is about 22.98 million m2. Fifteen plants are located in the eastern sector and 23 in the western sector, including two petrochemical companies, three refineries, two power plants, a melamine company, an industrial gas corporation, a paper products company and, two steam electricity generating stations, in addition to several other industries. Therefore, only 30 percent of the land in the SIA's eastern sector and 70 percent of land in the SIA's western sector is available for future expansion. Presently, industries in the SIA generate approximately 204,000 t of solid waste. With future development in the industries in the SIA, the estimated quantities will reach 240,000 t. The Shuaiba Area Authority (SAA), a governmental regulatory body responsible for planning and development in the SIA, has recognized the problem of solid waste and has developed an industrial waste minimization program. This program would help to reduce the quantity of waste generated within the SIA and thereby reduce the cost of waste management. This paper presents a description of the waste minimization program and how it is to be implemented by major petroleum companies. The protocols employed in the waste minimization program are detailed.


2009 ◽  
Vol 610-613 ◽  
pp. 55-60
Author(s):  
Wu Jang Huang ◽  
Wei Chu ◽  
Ling Hui Hsieh ◽  
Jian Guo Chen

This study aimed to prepare a high performance plastic concrete made of epoxy resin and Portland type-I cement mixed with at least one inorganic solid waste of demercurated lighting phosphor powder or municipal solid waste incineration scrubber residue. The ratio between liquid epoxy resin and cement was 1:2; the scrubber residue and demercurated phosphor powder were added as modifiers for cement component in order to improve the strength and thermal properties of synthesized plastic concrete. The results indicate that, the addition of scrubber residue causes a decrease in both strength and thermal properties; whereas, the demercurated phosphor powder can replace 100% of the contents of cement without any significantly change in either strength or thermal properties. Atomic force microscopy and Raman spectroscopy were used to characterize the chemical structure of cured concrete and the results indicate that the surface softness increases with an increase in the mixed percentage of epoxy resin.


2015 ◽  
Vol 40 (32) ◽  
pp. 10346-10353 ◽  
Author(s):  
Raghu Sripada ◽  
Vinayan Bhagavathi Parambath ◽  
Mridula Baro ◽  
Santhosh P Nagappan Nair ◽  
Ramaprabhu Sundara

Sign in / Sign up

Export Citation Format

Share Document