scholarly journals Optimization Method of Tool Parameters and Cutting Parameters Considering Dynamic Change of Performance Indicators

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6181
Author(s):  
Daxun Yue ◽  
Anshan Zhang ◽  
Caixu Yue ◽  
Xianli Liu ◽  
Mingxing Li ◽  
...  

In the process of metal cutting, the cutting performance of cutting tools varies with different parameter combinations, so the results of the performance indicators studied are also different. So in order to achieve the best performance indicator it is necessary to get the best parameter matching combination. In addition, in the process of metal cutting, the value of the performance index is different at each stage of the processing process. In order to consider the cutting process more comprehensively, it is necessary to use a comprehensive evaluation method that can evaluate the dynamic process of performance indicators. This paper uses a dynamic evaluation method that considers the dynamic change of performance indicators in each stage of the cutting process to comprehensively evaluate the tool parameters and cutting parameters at each level. For the purpose of high processing efficiency and long tool life, tool wear rate and material removal rate are used as performance indicators. In the case of specified rake angle, cutting speed and cutting width, titanium alloy is studied by end milling cutter side milling. The tool parameters and cutting parameters in milling process are optimized by using a dynamic comprehensive evaluation method based on gain horizontal excitation. Finally, the parameter matching combination that can make the performance indicator reach the best is obtained. The results show that when the rake angle is 8°, the cutting speed is 37.68 m/min, and the cutting width is 0.2 mm, the tool wear rate and material removal rate are the best when the clearance angle is 9°, the helix angle is 30°, the feed per tooth is 0.15 mm/z, and the cutting depth is 2.5 mm.

2011 ◽  
Vol 188 ◽  
pp. 272-276
Author(s):  
Ai Qin Lin ◽  
Min Li Zheng ◽  
Yan Gu ◽  
C.G. Fan

High-speed cutting is a complexity and uncertainty process .The cutting parameters optimization is ambiguous. In this paper, based on the orthogonal experiment of high-speed milling aluminum alloy 7475, we use fuzzy comprehensive evaluation to optimize the parameters high-speed milling of aluminum alloy 7475 in the indication of surface roughness, cutting force, material removal rate. We have got cutting parameters optimal that is highly processing quality and productivity. Compared optimal results with orthogonal experimental results, we found that the optimal result is reliable. The study shows that fuzzy comprehensive evaluation method can optimize the parameters of high-speed milling of aluminum alloy 7475 accurately. This method has also a good application effect to other materials and great significance to guide actual production.


2013 ◽  
Vol 589-590 ◽  
pp. 38-44
Author(s):  
Gang Liu ◽  
Ming Chen ◽  
Peng Nan Li ◽  
Qing Zhen Bi ◽  
Bao Cai Guo

The concept of multi-constrained analysis of the cutting process is presented for the first time in the paper. The paper adopts a method to solve an important problem which is how to judge the influence of constrains during the cutting process. The research results are applied for HSS drills for cutting stainless steel. On the basis of the multi-constrained analysis combined with methods of simulations and standard experiments, the optimum methods are provided for structure, coating and cutting parameters of cutting tools. For geometric structure of tools, optimization is to increase thickness of cutting and rake angle. Coating optimization strategy is choosing high temperature hardness and low thermal conductivity coating. Optimization of cutting parameter is to adjust feed fate, then select proper cutting speed. The conclusion of paper is helpful for the cutting optimization.


2012 ◽  
Vol 548 ◽  
pp. 465-470
Author(s):  
Asaad A. Abdullah ◽  
Usama J. Naeem ◽  
Cai Hua Xiong

In recent years, applications have been proven finite-element method (FEM) in metal-cutting operations to be effective process in the study of cutting and chip formation. In this study, the simulation results are useful for both researchers and machine tool manufacturers for improving the design of cutting parameters. Finite-element analysis (FEA) that used in this study of simulation the cutting parameters and tool geometries effects on the force and temperature in turning AISI 1040. The simulation parameters that used in this study are cutting speed (75 - 300 m/min),feed rate (0.2 mm/rev), cut depth (0.75-1.5 mm), and rake angle (0-20 °). The results of cutting forces were (240 – 520 N), the temperature were (300-420 °C), and the heat rate (14202.3-83772.8 W/mm3) on the cutting edge. The simulation process also show that the increase of cutting speed leads to decrease in the cutting forces, while it has increasing in temperature, and heat rate. Also, the results show that the increase of cutting depth associated increase the cutting force only.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1489-1503
Author(s):  
Marwa Q. Ibraheem

In this present work use a genetic algorithm for the selection of cutting conditions in milling operation such as cutting speed, feed and depth of cut to investigate the optimal value and the effects of it on the material removal rate and tool wear. The material selected for this work was Ti-6Al-4V Alloy using H13A carbide as a cutting tool. Two objective functions have been adopted gives minimum tool wear and maximum material removal rate that is simultaneously optimized. Finally, it does conclude from the results that the optimal value of cutting speed is (1992.601m/min), depth of cut is (1.55mm) and feed is (148.203mm/rev) for the present work.


Author(s):  
Nirmal S Kalsi ◽  
Rakesh Sehgal ◽  
Vishal S. Sharma

Due to the increase in complexity and expectations of more reliable solutions for a problem, the importance of multi-objective problem solutions is increasing day by day. It can play a significant role in making a decision. In the present approach, many combinations of the optimization techniques are proposed by the researchers. These hybrid evolutionary methods integrate positive characteristics of different methods and show the advantage to reach global optimization. In this chapter, Taguchi method and the GRA (Grey Relation Analysis) technique are pronounced and used to optimize a multi-objective metal cutting process to yield maximum performance of tungsten carbide-cobalt cutting tool inserts in turning. L18 orthogonal array is selected to analyze the effect of cutting speed, feed rate, and depth of cut using cryogenically treated and untreated inserts. The performance is evaluated in terms of main cutting force, power consumption, tool wear, and material removal rate using main effect plots of S/N (Signal to Noise) ratios. This chapter indicates that the grey-based Taguchi technique is not only a novel, efficient, and reliable method of optimization, but also contributes to satisfactory solution for multi-machining objectives in the turning process. It is concluded that cryogenically treated cutting tool inserts perform better. However, the feed rate affects the process performance most significantly.


Author(s):  
İsmail Kırbaş ◽  
Musa Peker ◽  
Gültekin Basmacı ◽  
Mustafa Ay

In this chapter, the impact of cutting parameters (depth of cut, cutting speed, feed, flow, rake angle, lead angle) on cutting forces in the turning process with regard to ASTM B574 (Hastelloy C-22) material has been investigated. Variance analysis has been applied in order to determine the factors affecting the cutting forces. The optimization of the parameters affecting the surface roughness has been obtained using response surface methodology (RSM) based on the Taguchi orthogonal experimental design. The accuracy of the developed models required for the estimation of the force values (Fx, Fy, Fz) is quite successful. In this study, where the R2 value has been used as the criterion/measure, accuracy values of 93.35%, 95.03%, and 95.09% have been achieved for Fx, Fy, and Fz, respectively. As a result of the ANOVA analysis, the most effective parameters for Fx at a 95% confidence interval are depth of cut, feed rate, flow, and rake angle. The most effective parameter for Fy is depth of cut, while the most effective parameters for Fz are depth of cut, feed rate, and flow, respectively.


Author(s):  
Atul Tiwari ◽  
Mohan Kumar Pradhan

To assure desire quality of machined products at minimum machining costs and maximum material removal rate, it is very important to select optimum parameters when metal cutting machine tool are used. Minimum Surface Roughness (Ra) is commonly desirable for the component; however Material Removal Rate (MRR) should be maximized. This chapter presents an approach for determination of the best cutting parameters precede to minimum Ra and maximum MRR simultaneously by integrating Response Surface Methodology with Multi-Objective Technique for Order Preference by Similarity to Ideal Solution and Teaching and learning based optimization algorithm in face milling of Al-6061 alloy. 30 experiments have been conducted based on RSM with 4 parameters, namely Speed, Feed, Depth of Cut and Coolant Speed and three levels each. ANOVA is performed to find the most influential input parameters for both MRR and Ra. Later the multi-objective attribution selection method TOPSIS and multi objective optimization method TLBO is used to optimize the responses.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2998 ◽  
Author(s):  
Kubilay Aslantas ◽  
Mohd Danish ◽  
Ahmet Hasçelik ◽  
Mozammel Mia ◽  
Munish Gupta ◽  
...  

Micro-turning is a micro-mechanical cutting method used to produce small diameter cylindrical parts. Since the diameter of the part is usually small, it may be a little difficult to improve the surface quality by a second operation, such as grinding. Therefore, it is important to obtain the good surface finish in micro turning process using the ideal cutting parameters. Here, the multi-objective optimization of micro-turning process parameters such as cutting speed, feed rate and depth of cut were performed by response surface method (RSM). Two important machining indices, such as surface roughness and material removal rate, were simultaneously optimized in the micro-turning of a Ti6Al4V alloy. Further, the scanning electron microscope (SEM) analysis was done on the cutting tools. The overall results depict that the feed rate is the prominent factor that significantly affects the responses in micro-turning operation. Moreover, the SEM results confirmed that abrasion and crater wear mechanism were observed during the micro-turning of a Ti6Al4V alloy.


1997 ◽  
Vol 119 (1) ◽  
pp. 86-94 ◽  
Author(s):  
D. A. Stephenson ◽  
P. Bandyopadhyay

Obtaining accurate baseline force data is often the critical step in applying machining simulation codes. The accuracy of the baseline cutting data determines the accuracy of simulated results. Moreover, the testing effort required to generate suitable data for new materials determines whether simulation provides a cost or time advantage over trial-and-error testing. The efficiency with which baseline data can be collected is limited by the fact that simulation programs do not use standard force or pressure equations, so that multiple sets of tests must be performed to simulate different machining processes for the same tool-workpiece material combination. Furthermore, many force and pressure equations do not include rake angle effects, so that separate tests are also required for different cutter geometries. This paper describes a unified method for simulating cutting forces in different machining processes from a common set of baseline data. In this method, empirical equations for cutting pressures or forces as a function of the cutting speed, uncut chip thickness, and tool normal rake angle are fit to baseline data from end turning, bar turning, or fly milling tests. Forces in specific processes are then calculated from the empirical equations using geometric transformations. This approach is shown to accurately predict forces in end turning, bar turning, or fly milling tests on five common tool-work material combinations. As an example application, bar turning force data is used to simulate the torque and thrust force in a combined drilling and reaming process. Extrapolation errors and corrections for workpiece hardness variations are also discussed.


Sign in / Sign up

Export Citation Format

Share Document