scholarly journals Influence of the Deep Cryogenic Treatment on AISI 52100 and AISI D3 Steel’s Corrosion Resistance

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6357
Author(s):  
Patricia Jovičević-Klug ◽  
Tjaša Kranjec ◽  
Matic Jovičević-Klug ◽  
Tadeja Kosec ◽  
Bojan Podgornik

The effect of deep cryogenic treatment (DCT) on corrosion resistance of steels AISI 52100 and AISI D3 is investigated and compared with conventional heat-treated counterparts. DCT’s influence on microstructural changes is subsequently correlated to the corrosion resistance. DCT is confirmed to reduce the formation of corrosion products on steels’ surface, retard the corrosion products development and propagation. DCT reduces surface cracking, which is considered to be related to modified residual stress state of the material. DCT’s influence on each steel results from the altered microstructure and alloying element concentration that depends on steel matrix and type. This study presents DCT as an effective method for corrosion resistance alteration of steels.

Author(s):  
Menderes Kam

This study investigated the effects of Deep Cryogenic Treatment (DCT) on machinability, hardness, and microstructure in dry turning process of AISI 4140 (48-51 HRc) tempered steels with ceramic cutting tools on the surface roughness (Ra). DCT process of steels has shown significant improvement in their mechanical properties. In this context, experiments were made with Taguchi L16 method and optimum values were determined. Three different values for each control factors as: different heat treated samples, cutting speeds (160, 200, 240, 280 m/min), feed rates (0.08, 0.12, 0.16, 0.20 mm/rev) were selected. As a result, the lowest Ra value was found to be 0.159 µm for the DCTT36 sample at a cutting speed of 240 m/min, a feed rate of 0.08 mm/rev. The optimum Ra value was the lowest for the DCTT36 sample compared to the other samples as 0.206 µm. The hardness values of the micro and macro were highest for the DCTT36 sample. Microstructural point of view Scanning Electron Microscopy (SEM) point of view, the DCCT36 sample showed that best results owing to its homogeneity. It was concluded that lower Ra values can be obtained with ceramic cutting tool in dry turning experiments according to the studies in the literature review. It is thought to be preferred as an alternative to cylindrical grinding process due to lower cost.


Author(s):  
Patricia Jovičević-Klug ◽  
Bojan Podgornik

Deep cryogenic treatment (DCT) is a type of cryogenic treatment, where a metallic material is subjected to temperatures below -150°C, normally to temperatures of liquid nitrogen (-196 °C). When a material is exposed to DCT as a part of heat treatment, changes in microstructure are induced due to new grain formation, changes in grain size, change in the solubility of atoms, movement of dislocations, alteration of crystal structure, and finally new phase formation. The metallic material's performance and later performance of manufactured components and tools from this specific material are dependent on the selection of proper design, proper material, accuracy with which the tool is made and application of proper heat treatment, including any eventual DCT. Metallic materials are ferrous and non-ferrous metals. In the last years ferrous metals (different grades of steel) and non-ferrous alloys (aluminum, magnesium, titanium, nickel etc.) have been increasingly treated with DCT to alter their properties. DCT treatment has shown to reduce density of defects in crystal structure, increase wear resistance of material, increase hardness, improve toughness, and reduce tensile strength and corrosion resistance. However, some researchers also reported results showing no change in properties (toughness, hardness, corrosion resistance, etc.) or even deterioration when subjected to DCT treatment. This leads to a lack of consistency and reliability of the treatment process, which is needed for successful application in industry. This review provides a synopsis of DCT usage and resulting effects on treated materials used in automotive industry.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1088 ◽  
Author(s):  
Cherish Mani ◽  
R Karthikeyan ◽  
Sathish Kannan

An attempt was made to study the corrosion behavior of austenitic stainless-steel SS 316L/Monel 400 alloy dissimilar metal welded joints using gas tungsten arc welding. This combination of welded joints is used in re-heaters and heat exchangers in gas processing and oil refining industries. The welded specimens were subjected to post-weld treatments, such as annealing and deep cryogenic treatment. The welded specimens were sectioned into five different parts: SS 316L base, SS 316L HAZ, weld, Monel HAZ, and Monel base. The polarization method and electrochemical impedance analysis were used to analyze the corrosion resistance in a NaCl solution. A polarization graph, Nyquist plot, and Bode plot were constructed for all regions, separately, for the heat-treated and cryo-treated specimens, to analyze the variation in corrosion resistance in different regions, and then the results were compared. To validate the results of electrochemical impedance analysis, scanning electron microscope (SEM) and energy dispersive spectroscope (EDS) analyses were also performed. The results indicated that the cryo-treated specimens have better corrosion resistance when compared to the annealed ones. Weld region on both specimens exhibited better corrosion resistance when compared to other zones.


2010 ◽  
Vol 139-141 ◽  
pp. 670-676
Author(s):  
Hong Liang Xiang ◽  
Dong Liu ◽  
Wei Lin Huang ◽  
Fu Shan He

SAF2906 is a new kind of super duplex stainless steel, and more corrosion-resistant and strong than SAF2507, suitable to be used in the low temperature and corrosion conditions. In order to prevent the occurrence of microstructure changes resulting in the property deterioration, in the general, the castings made for SAF2906 should be cryogenically treated before they are used in the ultra low conditions. N is an alloying element, usually added to stainless steels to increase the material properties. So, In this paper, the effects of N content on microstructure, mechanical and corrosion resistance properties of SAF2906 casting super duplex stainless steel (SDSS) after cryogenic treatment were studied by means of Optical Microscope(OM), X-ray Diffraction(XRD) and electrochemical workstation. The results indicate that N can increase the amount of γ phase according to a linear relationship of Φ(γ)=99.4×w(N)+6.16. When N content is low or medial, γ phase can precipitate from ferrite. When N content is high, γ phase does not precipitate from ferrite and is converted directly from ferrite and austenite grain boundaries. The higher N content, the greater tensile strength and elongation, the better corrosion resistance. Compared with solution state, cryogenic treatment can improve corrosion resistance.


2017 ◽  
Vol 31 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Srinivasagam Ramesh ◽  
B. Bhuvaneswari ◽  
G. S. Palani ◽  
D. Mohan Lal ◽  
Nagesh R. Iyer

Author(s):  
Idayan A ◽  
C. Elanchezhian ◽  
B. Vijaya Ramnath ◽  
Palanikumar K

In this research work, two types of cryogenic treatment such as deep cryogenic treatment (-196oC) and shallow cryogenic treatment (-80oC) have been adopted for wear resistance to increase in AISI 440C bearing steel. This paper has been focused to increase Wear Resistance (WR) through deep micro structural analyses, and also attention has been made to correlate the microstructure with the wear character of Deep Cryogenic treated (DCT) specimens, Conventional Heat Treated (CHT) specimens and Shallow Cryogenic Treated (SCT) specimens. Micro structural examinations have been carried out in the specimens through Scanning Electron Microscopy (SEM), Energy Dispersive Analysis of X-ray (EDAX) and X-Ray Diffraction (XRD). Wear characteristics of AISI 440C bearing steel has been studied. The outcome of the research disclosed that the DCT specimens have higher wear resistance than SCT and CHT specimens. The effective wear mechanisms recognized were the constitution of white layers and delamination of white layers. The microstructures of the materials have been varied through heat treatment process. The modification of Secondary Carbides (SCs) precipitation characteristics and its reduction of retained austenite in the microstructure have been correlated with wear character and these are the liable mechanism to raise the wear resistance of bearing steels through DCT.


2012 ◽  
Vol 445 ◽  
pp. 965-970 ◽  
Author(s):  
F. Bouzada ◽  
M. Cabeza ◽  
P. Merino ◽  
S. Trillo

This paper describes how deep cryogenic treatment at 98K produces changes in the microstructure of a heat-treated aluminum alloy. It was observed how the sub-micrometric particles increased near and at the grain boundaries. This slight precipitation did not produce any modification in static mechanical properties. However, the compressive residual stresses of the material were higher after compared to before the treatment. Both these effects can enhance the life of this alloy through cryogenic treatment.


Sign in / Sign up

Export Citation Format

Share Document