scholarly journals Anisotropic Behavior of Al1050 through Accumulative Roll Bonding

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6910
Author(s):  
Sasan Sattarpanah Karganroudi ◽  
Bahman Nasab ◽  
Davood Rahmatabadi ◽  
Mina Ahmadi ◽  
Mohammad Gholami ◽  
...  

In this study, Al1050 sheets were fabricated in five passes using the accumulative roll bonding (ARB) technique. For a more accurate and complete investigation, different tests were used, including a uniaxial tensile test. The results show that elongation increases about 50% for the annealed sample, which is 2.5 times that of the fifth pass (20%). A five-fold increase can be seen in tensile strength, which was 50 MPa in the annealed sample and reached 250 MPa at the end of the fifth pass. The annealed sample’s yield stress was 40 MPa, 4.5 times less than 180 MPa after five passes of ARB. Then, to evaluate sample hardness, the Vickers microhardness test was conducted in the samples’ depth direction, which recorded 39 HV for the annealed piece and 68 HV after the last ARB pass. These results show that the hardness increases by 1.8 times after five passes of ARB. In the next step, by conducting fractography tests after the sample fractures during the tensile test, the fracture’s mechanism and type were identified and explained. Finally, X-ray diffraction (XRD) was employed to produce pole figures of sample texture, and the anisotropy phenomena of the annealed sample and ARBed samples were wholly examined. In this study, with the help of pole figures, the anisotropic behavior after ARB was investigated and analyzed. In each step of the process, observing the samples’ texture states and the anisotropy magnificent was possible. According to the results, normal anisotropy of 0.6 in the annealed sample and 1.8 achieved after the fifth pass of ARB indicates that ARB leads to an increase in anisotropy.

2015 ◽  
Vol 44 (2) ◽  
pp. 94-99 ◽  
Author(s):  
Swagata Dutta ◽  
M. S. Kaiser

Uniaxial tensile test was carried out at different loading direction (0o, 90o and 45o) on rolled aluminiumsheets. The anisotropic coefficient was analyzed to reveal formability characteristics. The shear strain that wasimposed during the ASR was extensive and the shear marks was inclined more or less linearly without beingzigzag or spiral lines. The ASRC improved the normal anisotropy coefficient compared to CR specimens. Thehighest normal anisotropy and the lowest planar anisotropy were observed by ASRC samples. Therefore, it wasfound that, asymmetric rolling especially ASRC can be used to improve the formability of aluminium thick sheets.


2021 ◽  
Author(s):  
Ali Akhavan Attar ◽  
Ali Alavi Nia ◽  
Yousef Mazaheri ◽  
Ehsan Ghassemali

Abstract In this study, the fracture toughness of the multi-layered commercial pure aluminum samples (AA1050) prepared by warm accumulative roll bonding (WARB) was investigated for the first time. Based on the ASTM E561 standard, the R-curve method was utilized to measure the plane stress fracture toughness. Compact tension (CT) samples were prepared from the sheets that were processed by different ARB cycles. Mechanical properties, microstructure, and fracture surfaces of the CT samples were studied by uniaxial tensile test, electron backscatter diffraction (EBSD), and scanning electron microscopy (SEM), respectively. By increasing the number of WARB cycles, fracture toughness increased; after five cycles, 78% enhancement was observed compared to the pre-processed state. A correlation was seen between the fracture toughness variations and ultimate tensile strength (UTS). WARB enhanced UTS up to 95%, while the grain size showed a reduction from 35 to 1.8 µm. Measured fracture toughness values were compared with the room temperature ARB outcomes, and the effective parameters were analyzed. Fractography results indicated that the presence of tiny cliffs and furrows and hollow under fatigue loading zones and shear ductile rupture in the Quasi-static tensile loading zone.


Author(s):  
D. Rahmatabadi ◽  
B. Mohammadi ◽  
R. Hashemi ◽  
T. Shojaee

In this study, ultrafine grained Al5052/Cu multilayered composite has been produced by accumulative roll bonding (ARB) and fracture properties have been studied using plane stress fracture toughness. The fracture toughness has been investigated for the unprocessed specimens, primary sandwich and first, second, and third cycles of ARB process by ASTM E561 and compact tension (CT) specimens. Also, the microstructure and mechanical properties have been investigated using optical microscopy, scanning electron microscopy, uniaxial tensile tests, and microhardness measurements. The value of plane stress fracture toughness for the ultrafine grained Al5052/Cu composite increased by increasing the number of ARB cycles, continuously from the primary sandwich to end of the third cycle. The maximum value of 59.1 MPa m1/2 has been obtained that it is about 2.77 and 4.05 more than Al5052 and pure Cu (unprocessed specimens). This phenomenon indicated that ARB process and the addition of copper to aluminum alloy could increase the value of fracture toughness to more than three times. The results showed that by increasing the ARB cycles, the thickness of copper layers reduced and after the fifth cycle, the excellent uniformity of Cu layers achieved. By increasing the number of ARB cycles, the microhardness of both aluminum and copper layers have been significantly increased. The tensile strength of the sandwich has been enhanced continually, and the maximum value of 566.5 MPa has been achieved.


Author(s):  
R Pramod ◽  
N Siva Shanmugam ◽  
C K Krishnadasan ◽  
G Radhakrishnan ◽  
Manu Thomas

This work mainly focuses on designing a novel aluminum alloy 6061-T6 pressure vessel liner intended for use in launch vehicles. Fabrication of custom-made welding fixtures for the assembly of liner parts, namely two hemispherical domes and end boss, is illustrated. The parts of the liner are joined using the cold metal transfer welding process, and the welding trials are performed to arrive at an optimized parametric range. The metallurgical characterization of weld joint reveals the existence of dendritic structures (equiaxed and columnar). Microhardness of base and weld metal was 70 and 65 HV, respectively. The tensile strength of base and weld metal was 290 and 197 MPa, respectively, yielding a joint efficiency of 68%. Finite-element analysis of a uniaxial tensile test was performed to predict the tensile strength and location of the fracture in base and weld metal. The experimental and predicted tensile test results were found to be in good agreement.


2020 ◽  
Vol 54 (26) ◽  
pp. 3949-3965 ◽  
Author(s):  
Xuan Zheng ◽  
Jun Zhang ◽  
Zhenbo Wang

In the present paper, a modified micromechanics based model that describes the crack bridging stress in randomly oriented discontinuous fiber reinforced engineered cementitious composite is developed. In the model, effect of multiple matrix cracking on fiber embedded length, which in turn influencing fiber bridging in the composite, is taken into consideration. First, crack spacing of high strength-low shrinkage engineered cementitious composite was experimentally determined by photographing the specimen surface at some given loading points during uniaxial tensile test. The diagram of average cracking spacing and loading time of each composite is obtained based on above data. Then, fiber bridging model is modified by introducing a revised fiber embedment length as a function of crack spacing. The model is verified with uniaxial tensile test on both tensile strength and crack opening. Good agreement between model and test results is obtained. The modified model can be used in design and prediction of tensile properties of fiber reinforced cementitious composites with characteristics of multiple matrix cracking.


Sign in / Sign up

Export Citation Format

Share Document