scholarly journals Bias-Enhanced Formation of Metastable and Multiphase Boron Nitride Coating in Microwave Plasma Chemical Vapor Deposition

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7167
Author(s):  
Kallol Chakrabarty ◽  
Paul A. Baker ◽  
Vineeth M. Vijayan ◽  
Shane A. Catledge

Boron nitride (BN) is primarily a synthetically produced advanced ceramic material. It is isoelectronic to carbon and, like carbon, can exist as several polymorphic modifications. Microwave plasma chemical vapor deposition (MPCVD) of metastable wurtzite boron nitride is reported for the first time and found to be facilitated by the application of direct current (DC) bias to the substrate. The applied negative DC bias was found to yield a higher content of sp3 bonded BN in both cubic and metastable wurtzite structural forms. This is confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Nano-indentation measurements reveal an average coating hardness of 25 GPa with some measurements as high as 31 GPa, consistent with a substantial fraction of sp3 bonding mixed with the hexagonal sp2 bonded BN phase.

2005 ◽  
Vol 480-481 ◽  
pp. 71-76 ◽  
Author(s):  
Jin Chun Jiang ◽  
Wen Juan Cheng ◽  
Yang Zhang ◽  
He Sun Zhu ◽  
De Zhong Shen

Carbon nitride films were grown on Si substrates by a microwave plasma chemical vapor deposition method, using mixture of N2, CH4 and H2 as precursor. Scanning electron microscopy shows that the films consisted of a large number of hexagonal crystallites. The dimension of the largest crystallite is about 3 µm. The X-ray photoelectron spectroscopy suggests that nitrogen and carbon in the films are bonded through hybridized sp2 and sp3 configurations. The X-ray diffraction pattern indicates that the major part of the films is composed of α-, β-, pseudocubic C3N4 and graphitic C3N4. The Raman peaks match well with the calculated Raman frequencies of α- and β-C3N4, revealing the formation of the α- and β-C3N4 phase.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1091-1095 ◽  
Author(s):  
W. T. ZHENG ◽  
X. WANG ◽  
T. DING ◽  
X. T. LI ◽  
W. D. FEI ◽  
...  

The carbon nitride films were deposited on single crystalline Si(001) and polycrystalline diamond substrates using microwave plasma chemical vapor deposition (MPCVD) with CH4+N2 as well as CH4+NH3 mixtures as the reactive gas source, respectively. Different CH4/N2 and CH4/NH3 gas ratios were tested. The results showed that carbon nitride films with different nitrogen content could more readily be obtained using a mixture of CH4/N2 rather than CH4/NH3. The films grown by different CH4/N2 ratios showed different morphology, which was revealed by scanning electron microscopy (SEM). The crystalline carbon nitride films containing silicon were realized using a CH4:N2 = 1:100 ratio. X-ray photoelectron spectroscopy (XPS), Auger electron microscopy (AES), Raman spectroscopy, and X-ray diffraction were used to characterize the composition and chemical bonding of the deposited films.


2008 ◽  
Vol 47 (4) ◽  
pp. 3050-3052
Author(s):  
Masataka Moriya ◽  
Yuji Matsumoto ◽  
Yoshinao Mizugaki ◽  
Tadayuki Kobayashi ◽  
Kouichi Usami

2000 ◽  
Vol 9 (7) ◽  
pp. 545-549
Author(s):  
Zhang Yong-ping ◽  
Gu You-song ◽  
Chang Xiang-rong ◽  
Tian Zhong-zhuo ◽  
Shi Dong-xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document