scholarly journals The Influence of Pd and Zr Co-Doping on the Microstructure and Oxidation Resistance of Aluminide Coatings on the CMSX-4 Nickel Superalloy

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7579
Author(s):  
Jolanta Romanowska ◽  
Jerzy Morgiel ◽  
Maryana Zagula-Yavorska

Pd + Zr co-doped aluminide coatings were deposited on the CMSX-4 nickel superalloy, widely used in the aircraft industry, in order to investigate their microstructure and improvement of oxidation resistance. Palladium was deposited by the electrochemical method, whereas zirconium and aluminum by the chemical vapor deposition (CVD) method. Coatings consist of two zones: the additive and the interdiffusion one. The additive zone contains β–(Ni,Pd)Al phase with some zirconium-rich precipitates close to the coating’s surface, whereas the interdiffusion zone consists of the same β–(Ni,Pd)Al phase with inclusions of refractory elements that diffused from the substrate, so called topologically closed-packed phases. Palladium dissolves in the β–NiAl phase and β–(Ni,Pd)Al phase is being formed. Pd + Zr co-doping improved the oxidation resistance of analysed coatings better than Pd mono-doping. Mechanisms responsible for this phenomenon and the synergistic effect of palladium and zirconium are discussed.

2015 ◽  
Vol 227 ◽  
pp. 361-364
Author(s):  
Ryszard Filip ◽  
Maryana Zagula-Yavorska ◽  
Maciej Pytel ◽  
Jolanta Romanowska ◽  
Mateusz Maliniak ◽  
...  

The aim of the present work was to determine the influence of chemical composition of the protective coating on the oxidation resistance of the protected alloy. Zirconium modified and nonmodified aluminide coatings were deposited on the MAR M200 nickel superalloy by the CVD method. The oxidation tests were conducted at 1100°C into 23 hour in the air. The chemical composition (EDS) analysis was performed. The kinetic of oxidation of zirconium modified and nonmodified aluminide coatings was similar. Oxides inclusions called pegs were observed on the surface of oxidized aluminide coating. HfO2 oxide is more stable than Al2O3 oxide, hafnium atoms can replace aluminum atoms in Al2O3 oxides. This phenomena let to stabilize NiAl phase and increase of oxidation resistance of aluminide coating.


2019 ◽  
Vol 253 ◽  
pp. 03006
Author(s):  
Jolanta Romanowska ◽  
Maryana Zagula-Yavorska ◽  
Łukasz Kolek

The application of protective aluminide coatings is an effective way to increase the oxidation resistance of the treated parts and prolongs their lifetime. The addition of small amount of noble metals (platinum or palladium) or reactive elements such as: hafnium, zirconium, yttrium and cerium has a beneficial effect on oxidation behavior. This beneficial effect includes an improvement of adhesion of alumina scales and reduction of oxide scale growth rate. Platinum and hafnium or zirconium modified aluminide coating were deposited on pure nickel using the electroplating and CVD methods. The coatings consisted of two layers: an outer, β-NiAl phase and the interdiffusion γ’-Ni3Al phase. Palladium dissolved in the whole coating, whereas hafnium and zirconium formed inclusions on the border of the layers. Samples were subjected to cyclic oxidation test at 1100 °C for 200h. Oxidation resistance of the palladium, Hf+Pd and Zr+Pd modified coatings deposited on pure nickel does not differ significantly, but is better than the oxidation resistance of the non-modified one.


2013 ◽  
Vol 592-593 ◽  
pp. 469-472 ◽  
Author(s):  
Ryszard Filip ◽  
Marek Góral ◽  
Marcin Zawadzki ◽  
Andrzej Nowotnik ◽  
Maciej Pytel

The article presents the investigation of influence of long-term annealing of Zr modified aluminide coatings on its microstructure. The coatings were deposited by Chemical Vapour Deposition on MAR M200+Hf nickel superalloy. Annealing was carried out in a vacuum furnace at the temperature 1020°C within the period of 12, 16 and 20 hours respectively. The microstructral analysis was carried out using Hitachi S-3400 scanning electron microscope. Phase changes in the aluminide layer were observed, particularly the NiAl phase into Ni3Al. Changes in thickness of individual layers in the coating were observed. Conducted research showed that there is no influence of Zr on structure of the aluminide coating during annealing. The structure changes are similar to observed in simple aluminide coating. The maximum time of heat treatment without significant influence on structure of aluminide coating is 16 hours. After that time the main component of coating is NiAl phase.


2018 ◽  
Vol 18 (4) ◽  
pp. 1421-1429 ◽  
Author(s):  
Jolanta Romanowska ◽  
Jerzy Morgiel ◽  
Łukasz Kolek ◽  
Przemysław Kwolek ◽  
Maryana Zagula-Yavorska

2017 ◽  
Vol 13 ◽  
pp. 167-195 ◽  
Author(s):  
Aloke Paul

The diffusion-controlled growth and microstructural evolution at the interface of aluminide coatings and different substrates such as Ni-base superalloys and steel are reviewed. Quantitative diffusion analysis indicates that the diffusion rates of components in the β-NiAl phase increases with the addition of Pt. This directly reflects on the growth rate of the interdiffusion zone. The thickness and formation of precipitates increase significantly with the Pt addition. Mainly Fe2Al5phase grows during hot dip aluminization of steel along with few other phases with the very thin layer. Chemical vapor deposition process is being established for a better control of the composition of the Fe-aluminide coating on steel.


2019 ◽  
Vol 38 (2019) ◽  
pp. 621-627
Author(s):  
Maryana Zagula-Yavorska

AbstractThe rhodium 0,5 μm thick layer was deposited on pure nickel and CMSX 4 Ni-based superalloy using the electroplating method. The rhodium coated substrates were aluminized by the CVD method. Oxidation resistance of nonmodified and rhodium modified coatings deposited both on nickel and CMSX 4 superalloy was compared. The triple-layer structure of rhodium modified coatings deposited on pure nickel was found. The β-(Ni,Rh)Al, rhodium doped γ'-Ni3Al and rhodium doped γ-Ni(Al) phases were the main components of the coatings on pure nickel. Two layers – additive and interdiffusion ones were identified in coatings deposited on CMSX 4 superalloy. TEM, SEM and XRD analysis revealed that β-(Ni,Rh)Al phase was the main component of the additive layer. Moreover Topologically Closed-Pack σ phases containing refractory elements in the β-(Ni,Rh)Al matrix of the interdiffusion layer were found. The rhodium modified aluminide coatings have better oxidation resistance than the nonmodified ones both on the pure nickel and CMSX 4 superalloy.


Author(s):  
Bruce Michael Warnes

Chemical vapor deposition (CVD) is an old coating technology, but it was not successfully utilized to aluminize gas turbine hardware until recently (1989). In CVD aluminizing, the use of multiple, independently controlled, low temperature, external, metal halide generators combined with computer control of all process variables gives flexibility and consistent quality that is not possible with any other aluminizing process. It has been shown that harmful coating impurities (such as sulfur and boron etc.) can be transported to a coating from a high temperature aluminum source in the coating chamber during aluminizing. Representative processes include: pack cementation, above the pack, SNECMA, and high activity CVD. In contrast, it has also been demonstrated that CVD low activity aluminizing removes harmful impurities (S, P, B & W etc.) from the coating during deposition. Furthermore, clean, low activity coatings (simple aluminide MDC-210 or platinum modified MDC-150L) have been shown to exhibit superior oxidation resistance compared to similar coatings made by other aluminizing processes. A second significant source of impurities in platinum modified aluminide diffusion coatings is electroplating, that is, plating bath components (S, P, CI, K, Ca etc.) are codeposited with the platinum, and these impurities can have either a beneficial (K&Ca) or a detrimental (S,P&Cl) influence upon the oxidation resistance of the product coating. The results of investigations on the transport of impurities during aluminizing and electroplating, plus the influence of these impurities on oxidation resistance of the product coatings will be presented and discussed.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3863
Author(s):  
Dominik Kukla ◽  
Mateusz Kopec ◽  
Zbigniew L. Kowalewski ◽  
Denis J. Politis ◽  
Stanisław Jóźwiak ◽  
...  

In this paper, aluminide coatings of various thicknesses and microstructural uniformity obtained using chemical vapor deposition (CVD) were studied in detail. The optimized CVD process parameters of 1040 °C for 12 h in a protective hydrogen atmosphere enabled the production of high density and porosity-free aluminide coatings. These coatings were characterized by beneficial mechanical features including thermal stability, wear resistance and good adhesion strength to MAR 247 nickel superalloy substrate. The microstructure of the coating was characterized through scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Mechanical properties and wear resistance of aluminide coatings were examined using microhardness, scratch test and standardized wear tests, respectively. Intermetallic phases from the Ni-Al system at specific thicknesses (20–30 µm), and the chemical and phase composition were successfully evaluated at optimized CVD process parameters. The optimization of the CVD process was verified to offer high performance coating properties including improved heat, adhesion and abrasion resistance.


Sign in / Sign up

Export Citation Format

Share Document