scholarly journals Prediction of System Parameters of Carbon-Based Composite Structure for Different Carbon Fiber Orientations with Mode Information at Reference Angle Only

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7626
Author(s):  
Chan-Jung Kim

The prediction of system parameters is important for understanding the dynamic behavior of composite structures or selecting the configuration of laminated carbon in carbon-based composite (CBC) structures. The dynamic nature of CBC structures allows the representation of system parameters as modal parameters in the frequency domain, where all modal parameters depend on the carbon fiber orientations. In this study, the variation in the system parameters of a carbon fiber was derived from equivalent modal parameters, and the system parameters at a certain carbon fiber orientation were predicted using the modal information at the reference carbon fiber orientation only and a representative curve-fitted function. The target CBC structure was selected as a simple rectangular structure with five different carbon fiber orientations, and the modal parameters were formulated based on a previous study for all modes. Second-order curve-fitted polynomial functions were derived for all possible cases, and representative curve-fitting functions were derived by averaging the polynomial coefficients. The two system parameters were successfully predicted using the representative curve-fitting function and the modal information at only the reference carbon fiber orientation, and the feasibility of parameter prediction was discussed based on an analysis of the error between the measured and predicted parameters.

Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 311
Author(s):  
Chan-Jung Kim

Previous studies have demonstrated the sensitivity of the dynamic behavior of carbon-fiber-reinforced plastic (CFRP) material over the carbon fiber direction by performing uniaxial excitation tests on a simple specimen. However, the variations in modal parameters (damping coefficient and resonance frequency) over the direction of carbon fiber have been partially explained in previous studies because all modal parameters have only been calculated using the representative summed frequency response function without modal analysis. In this study, the dynamic behavior of CFRP specimens was identified from experimental modal analysis and compared five CFRP specimens (carbon fiber direction: 0°, 30°, 45°, 60°, and 90°) and an isotropic SCS13A specimen using the modal assurance criterion. The first four modes were derived from the SCS13A specimen; they were used as reference modes after verifying with the analysis results from a finite element model. Most of the four mode shapes were found in all CFRP specimens, and the similarity increased when the carbon fiber direction was more than 45°. The anisotropic nature was dominant in three cases of carbon fiber, from 0° to 45°, and the most sensitive case was found in Specimen #3.


2021 ◽  
Author(s):  
Zhenzhan Yan ◽  
Li Yang ◽  
Ji-Min Han ◽  
Haojie Li ◽  
Junda Huo

In this work, a nano-scale carbon-based lead azide initiating film was prepared by electrospinning, carbonization, azide, and other steps using cheap and easily available lead acetate as the raw material....


2021 ◽  
Author(s):  
Dana Shoukroun ◽  
Sandro Olivo ◽  
Paul Fromme

Abstract Carbon fiber reinforced composites are widely used in the aerospace industry, due to their low weight and high strength. Porosity often occurs during the manufacturing of composite structures, which can compromise the structural integrity of the part and affect its mechanical properties. In the aerospace industry a typical requirement for structural components is for the porosity content to be kept below 2%. Non-destructive evaluation (NDE) techniques are used to estimate the porosity content in composite components, the most common being ultrasonic attenuation and X-ray computed tomography (CT). Planar Edge Illumination X-ray Phase Contrast Imaging (EI XPCI) was used to quantify the porosity content in woven carbon fiber reinforced composite plates with porosity ranging between 0.7% and 10.7%. A new metric was introduced, the standard deviation of the differential phase (STDVDP) signal, which represents the variation of inhomogeneity in the plates for features of a scale equal to or above the system resolution (here 12μm). The SDTVDP was found to have a very high correlation with porosity content estimated from matrix digestion and ultrasonic attenuation, hence providing a promising new methodology to quantify porosity in composite plates.


2013 ◽  
Vol 395-396 ◽  
pp. 76-79
Author(s):  
Da Huang ◽  
Cheng Hong Duan

In this paper, the stability of carbon fiber reinforced plastics (CFRP) cylinders under axial compression was studied by the finite element analysis method. According to the Riks method, compressive capacity of the composite structures was investigated by nonlinear analysis, in which the eigen buckling modes were considered in the form of initial defects. And the post-buckling performances of different structures were also compared.


2017 ◽  
Vol 88 (18) ◽  
pp. 2120-2131 ◽  
Author(s):  
Jue Hou ◽  
Bugao Xu ◽  
Hanchao Gao ◽  
RongWu Wang

This paper describes a novel method for measuring fiber orientations in nonwoven web images by using Bézier fitting curves to detect corners of fiber edges and to separate crossing fiber edges. First, the Canny detector was adopted to extract fiber edges. Second, Bézier curve fitting was used to fit each fiber edge for calculating the curvature of every point on the edge. Third, corner points were detected by locating points where the curvatures were minimal on various edges and below the threshold to divide edges into segments for orientation calculations. Last, a formula calculating the fiber orientation statistics based on the Euclidean distance was established. The experiment results demonstrated that the proposed method is robust for analyzing different nonwoven web images, and has a high accuracy for corner detection and fiber orientation calculation.


Sign in / Sign up

Export Citation Format

Share Document