scholarly journals Sliding Wear Behavior of High-Temperature Vacuum-Brazed WC-Co-NiP Functional Composite Coatings

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 88
Author(s):  
Roxana Muntean ◽  
Dragoș-Toader Pascal ◽  
Norbert Kazamer ◽  
Gabriela Mărginean ◽  
Viorel-Aurel Șerban

The present study aimed to investigate the tribological behavior of high-temperature vacuum-brazed WC-Co-NiP functional coatings deposited on 16MnCr5 case hardening steel. Dry sliding wear resistance was evaluated using a non-conformal ball-on-disk arrangement, at room temperature against 100Cr6 and WC-Co static partners, respectively. Morphological, microstructural, and chemical composition analyses showed a complex, phased structure composed of tungsten carbide, nickel, and hard cobalt-based η-structure. In the testing conditions, the coefficient of friction against 100Cr6 and WC-Co counterparts entered a steady-state value after approximately 1000 m and 400 m, respectively. The wear track analysis revealed phenomena of particles trapped between the sliding bodies, as well as gradual removal of asperities. The calculations of the wear rates proved that the values were strongly influenced by properties of the sliding system, such as crystal structure, stress discontinuities, hardness, and material homogeneity.

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 296 ◽  
Author(s):  
Chao Sun ◽  
Nannan Lu ◽  
Huan Liu ◽  
Xiaojun Wang ◽  
Xiaoshi Hu ◽  
...  

In this study, the dry sliding wear behaviors of SiC particle reinforced AZ91D matrix composites fabricated by stirring casting method were systematically investigated. The SiC particles in as-cast composites exhibited typical necklace-type distribution, which caused the weak interface bonding between SiC particles and matrix in particle-segregated zones. During dry sliding at higher applied loads, SiC particles were easy to debond from the matrix, which accelerated the wear rates of the composites. While at the lower load of 10 N, the presence of SiC particles improved the wear resistance. Moreover, the necklace-type distribution became more evident with the decrease of particle sizes and the increase of SiC volume fractions. Larger particles had better interface bonding with the matrix, which could delay the transition of wear mechanism from oxidation to delamination. Therefore, composites reinforced by larger SiC particles exhibited higher wear resistance. Similarly, owing to more weak interfaces in the composites with high content of SiC particles, more severe delamination occurred and the wear resistance of the composites was impaired.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 175
Author(s):  
Vitali Podgursky ◽  
Maxim Yashin ◽  
Taivo Jõgiaas ◽  
Mart Viljus ◽  
Asad Alamgir ◽  
...  

Comparative analysis of dry sliding wear behavior of nanocrystalline diamond (NCD) films and NCD films coated with a thin Al2O3 layer (Al2O3/NCD) is the main goal of the present study. Plasma-enhanced chemical vapor deposition (PECVD) and atomic layer deposition (ALD) methods were used to prepare the NCD and alumina films, respectively. Sliding wear tests were conducted at room temperature (RT), 300 and 450 °C in air. Independent of type of specimen, superlubricating behavior with the coefficient of friction (COF) in the range of 0.004‒0.04 was found for the tests at 300 °C. However, the COF value measured on the Al2O3/NCD films in the tests at 450 °C is lower than that for the NCD film. A relatively short run-in period and a stable COF value of about 0.15 were observed at this temperature for the Al2O3/NCD films. The width of the wear scars measured on the Al2O3/NCD films after the tests at 450 °C is significantly smaller in comparison with the NCD film. The apparent wear volume of the wear scar on the NCD film tested at 450 °C was noticeably higher than that on the Al2O3/NCD films.


Coatings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 268 ◽  
Author(s):  
Núria Cinca ◽  
Slawomir Cygan ◽  
Cezary Senderowski ◽  
Lucyna Jaworska ◽  
Sergi Dosta ◽  
...  

The medium and high temperature tribological behavior of different iron aluminide thermal spray coatings was investigated. Several powders synthesized through different routes (ball milling, self-decomposition, and self-propagating high-temperature sintering (SHS)) were evaluated. High heterogeneity of conventional High Velocity Oxygen Fuel (HVOF) coatings plays a vital role in their sliding performance, but as long as their integrity is preserved under high temperature oxidizing conditions, the wear rates are found to be acceptable, as it occurs in the case of ball milled Fe-40Al (at.%) powder. The friction phenomenon and wear mechanisms were analyzed in detail through the wear track morphology, contact surface, and friction coefficients. The occurrence of brittle phases in the sprayed coatings, which are also present when tested at high temperatures, appeared to be crucial in accelerating the coating failure.


Author(s):  
G. Prabu Ram ◽  
S. Karthikeyan ◽  
P. Emmanuel Nicholas ◽  
A. Sathya Sofia

Wear ◽  
2021 ◽  
pp. 203746
Author(s):  
M.V. Koricherla ◽  
T.B. Torgerson ◽  
S.A. Alidokht ◽  
V.N.V. Munagala ◽  
R.R. Chromik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document