scholarly journals Prediction of Bending, Buckling and Free-Vibration Behaviors of 3D Textile Composite Plates by Using VAM-Based Equivalent Model

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 134
Author(s):  
Senbiao Xi ◽  
Yifeng Zhong ◽  
Zheng Shi ◽  
Qingshan Yi

To solve the microstructure-related complexity of a three-dimensional textile composite, a novel equivalent model was established based on the variational asymptotic method. The constitutive modeling of 3D unit cell within the plate was performed to obtain the equivalent stiffness, which can be inputted into the 2D equivalent model (2D-EPM) to perform the bending, free-vibration and buckling analysis. The correctness and effectiveness of the 2D-EPM was validated by comparing with the results from 3D FE model (3D-FEM) under various conditions. The influence of yarn width and spacing on the equivalent stiffness was also discussed. Finally, the effective performances of 3D textile composite plate and 2D plain-woven laminate with the same thickness and yarn content were compared. The results revealed that the bending, buckling and free-vibration behaviors predicted by 2D-EPM were in good agreement with 3D-FEM, and the local field distributions within the unit cell of 3D textile composite plate were well captured. Compared with the 2D plain-woven laminate, the displacement of 3D textile composite plate was relatively larger under the uniform load, which may due to the fact that the through-the-thickness constrains of the former are only dependent on the binder yarns, while the warp yarns and weft yarns of the latter are intertwined closely.

Author(s):  
D. Zhang ◽  
A. M. Waas ◽  
M. Pankow ◽  
C. F. Yen ◽  
S. Ghiorse

The flexural response of a three-dimensional (3D) layer-to-layer orthogonal interlocked textile composite has been investigated under quasi-static three-point bending. Fiber tow kinking on the compressive side of the flexed specimens has been found to be a strength limiting mechanism for both warp and weft panels. The digital image correlation (DIC) technique has been utilized to map the deformation and identify the matrix microcracking on the tensile side prior to the peak load in the warp direction loaded panels. It has been shown that the geometrical characteristics of textile reinforcement play a key role in the mechanical response of this class of material. A 3D local–global finite element (FE) model that reflects the textile architectures has been proposed to successfully capture the surface strain localizations in the predamage region. To analyze the kink banding event, the fiber tow is modeled as an inelastic degrading homogenized orthotropic solid in a state of plane stress based on Schapery Theory (ST). The predicted peak stress is in agreement with the tow kinking stress obtained from the 3D FE model.


2008 ◽  
Vol 59 ◽  
pp. 116-119
Author(s):  
Joshim Ali ◽  
Derek Buckthorpe ◽  
Allister Cheyne ◽  
Johar Farooqi ◽  
Paul M. Mummery

Three-dimensional finite element (FE) methods are used to predict the Young’s modulus of two types of 2D woven carbon/carbon composites. Tensile tests are performed to validate the predictions. The results indicate that a novel image-based route in generating FE meshes gave strong agreement with experimental data, while a comparative unit cell FE model of the structure was found to be poorer. The differences between the image-based and unit cell methodologies were the consideration of the finer architectures of the composites and their porosity. The image-based approach highlighted true porosity in the structure due to meshes forming directly from X-ray tomographic data. However, the finer fibre architectures of the composites were compromised because of limitations in the pixel resolutions employed during the initial scanning process. In comparison, the unit cell models were based solely on idealisations of the composite microstructure, in which porosity was neglected.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 209
Author(s):  
Venkatachalam Gopalan ◽  
Vimalanand Suthenthiraveerappa ◽  
A. Raja Annamalai ◽  
Santhanakrishnan Manivannan ◽  
Vignesh Pragasam ◽  
...  

Due to the growing environmental awareness, the development of sustainable green composites is in high demand in composite industries, mainly in the automotive, aircraft, construction and marine applications. This work was an attempt to experimentally and numerically investigate the dynamic characteristics of Woven Flax/Bio epoxy laminated composite plates. In addition, the optimisation study on the dynamic behaviours of the Woven Flax/Bio epoxy composite plate is carried out using the response surface methodology (RSM) by consideration of the various parameters like ply orientation, boundary condition and aspect ratio. The elastic constants of the Woven Flax/Bio epoxy composite lamina needed for the numerical simulation are determined experimentally using two methods, i.e., the usual mechanical tests as well as through the impulse excitation of vibration-based approach and made a comparison between them. The numerical analysis on the free vibration characteristics of the composite was carried out using ANSYS, a finite element analysis (FEA) software. The confirmation of the FE model was accomplished by comparing the numerical results with its experimental counterpart. Finally, a comparison was made between the results obtained through the regression equation and finite element analysis.


2013 ◽  
Vol 353-356 ◽  
pp. 3304-3307
Author(s):  
Meng Yan Song ◽  
Ge Tian ◽  
Ming Wu Yuan ◽  
Li Na Ge ◽  
Jing Jing Song ◽  
...  

In this paper, the equivalent mechanical spring model of the three-dimensional continuum is studied. By using stiffness calculation formulas of three-dimensional continuum column under axial force and bending force, which are primary force states in the column, a mechanical equivalent trusses model with the same width and height is derived. The equivalent model is statically indeterminate trusses system of spring. The 3D spring calculation model can be used in the dynamic characteristic analysis. With the comparison of the first four order frequency values between the solid model and the equivalent spring model, it shows that the equivalent spring model not only have the equivalent stiffness in the static analysis but also have the equivalent dynamic characteristics in the dynamic analysis.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2012
Author(s):  
Qingshan Yi ◽  
Yifeng Zhong ◽  
Zheng Shi

Compared with the ordinary foundation plate, the composite conical convex-concave plate (CCCP) has obvious anisotropic characteristics, and there is less research on the relationship between its mechanical properties and structural parameters. In this article, a numerical model for the equivalent stiffness of a typical unit cell with conical convex is established by using the variational asymptotic method. Then, the 3D finite element model (3D-FEM) of CCCP is transformed into 2D equivalent plate model (2D-EPM) with the effective plate properties obtained from the constitutive analysis of unit cell. The accuracy of 2D-EPM is verified by comparing with the displacement, natural frequencies, and buckling results from 3D-FEM under different boundary conditions. Then, the influence of geometric parameters and layup configurations on the effective performances of CCCP are investigated. Finally, the buckling loads and natural frequencies of bidirectional CCCP are compared with those of CCCP by using the present model. The present model is particularly useful in the early design stage of CCCP where many design trade-offs need to be made over a vast design space in terms of material selection, ply angles, and geometric parameters.


Sign in / Sign up

Export Citation Format

Share Document