scholarly journals Investigation of Thermal Stability of Microstructure and Mechanical Properties of Bimetallic Fine–Grained Wires from Al–0.25%Zr–(Sc,Hf) Alloys

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 185
Author(s):  
Aleksey Nokhrin ◽  
Iana Shadrina ◽  
Vladimir Chuvil’deev ◽  
Vladimir Kopylov ◽  
Nikolay Berendeev ◽  
...  

Thermal stability of composite bimetallic wires from five novel microalloyed aluminum alloys with different contents of alloying elements (Zr, Sc, and Hf) is investigated. The alloy workpieces were obtained by induction-casting in a vacuum, preliminary severe plastic deformation, and annealing providing the formation of a uniform microstructure and the nucleation of stabilizing intermetallide Al3(Zr,Sc,Hf) nanoparticles. The wires of 0.26 mm in diameter were obtained by simultaneous deformation of the Al alloy with Cu shell. The bimetallic wires demonstrated high strength and improved thermal stability. After annealing at 450–500 °C, a uniform fine-grained microstructure formed in the wire (the mean grain sizes in the annealed Al wires are 3–5 μm). An increased hardness and strength due to nucleation of the Al3(Sc,Hf) particles was observed. A diffusion of Cu from the shell into the surface layers of the Al wire was observed when heating up to 400–450 °C. The Cu diffusion depth into the annealed Al wire surfaces reached 30–40 μm. The maximum elongation to failure of the wires (20–30%) was achieved after annealing at 350 °C. The maximum values of microhardness (Hv = 500–520 MPa) and of ultimate strength (σb = 195–235 MPa) after annealing at 500 °C were observed for the wires made from the Al alloys alloyed with 0.05–0.1% Sc.

2001 ◽  
Vol 40 (Part 1, No. 11) ◽  
pp. 6307-6310
Author(s):  
Jong-Uk Bae ◽  
Dong Kyun Sohn ◽  
Ji-Soo Park ◽  
Chang Hee Han ◽  
Jin Won Park ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2903
Author(s):  
Juvenal Giogetti Nemaleu Deutou ◽  
Rodrigue Cyriaque Kaze ◽  
Elie Kamseu ◽  
Vincenzo M. Sglavo

The present project investigated the thermal stability of cold-setting refractory composites under high-temperature cycles. The proposed route dealt with the feasibility of using fillers with different particle sizes and studying their influence on the thermo-mechanical properties of refractory geopolymer composites. The volumetric shrinkage was studied with respect to particle sizes of fillers (80, 200 and 500 µm), treatment temperature (1050–1250 °C) and amount of fillers (70–85 wt.%). The results, combined with thermal analysis, indicated the efficiency of refractory-based kyanite aggregates for enhancing thermo-mechanical properties. At low temperatures, larger amounts of kyanite aggregates promoted mechanical strength development. Flexural strengths of 45, 42 and 40 MPa were obtained for geopolymer samples, respectively, at 1200 °C, made with filler particles sieved at 80, 200 and 500 µm. In addition, a sintering temperature equal to 1200 °C appeared beneficial for the promotion of densification as well as bonding between kyanite aggregates and the matrix, contributing to the reinforcement of the refractory geopolymer composites without any sign of vitrification. From the obtained properties of thermal stability, good densification and high strength, kyanite aggregates are efficient and promising candidates for the production of environmentally friendly, castable refractory composites.


2005 ◽  
Vol 85 (2) ◽  
pp. 97-108 ◽  
Author(s):  
B. Q. Han * ◽  
Z. Zhang ◽  
E. J. Lavernia

2021 ◽  
Vol 324 ◽  
pp. 3-8
Author(s):  
Konstantine V. Nadaraia ◽  
Dmitry V. Mashtalyar ◽  
Sergey N. Suchkov ◽  
Vera V. Mostovaya ◽  
Igor M. Imshinetskiy ◽  
...  

The thermal stability of the superhydrophobic properties of coatings obtained on a magnesium alloy by plasma electrolytic oxidation (PEO) followed by treatment with fluoropolymer was studied. It was established that formed surface layers have contact angle (CA) equal to 171° and contact angle hysteresis equal to 6° at 25 °C, which allows to characterize them as superhydrophobic. After 5 cycles of cooling-heating of composite layers, CA was 135°, indicating the durability of coatings. Additionally, obtained polymer-containing layers demonstrated low wettability at 0 °C (CA was 105°).


2019 ◽  
Vol 788 ◽  
pp. 881-890 ◽  
Author(s):  
Kristína Bartha ◽  
Pavel Zháňal ◽  
Josef Stráský ◽  
Jakub Čížek ◽  
Milan Dopita ◽  
...  

2020 ◽  
Vol 2020 (9) ◽  
pp. 987-998
Author(s):  
V. N. Chuvil’deev ◽  
A. V. Nokhrin ◽  
Ya. S. Shadrina ◽  
A. V. Piskunov ◽  
V. I. Kopylov ◽  
...  

2008 ◽  
Vol 584-586 ◽  
pp. 905-910 ◽  
Author(s):  
Petr Homola ◽  
Margarita Slámová ◽  
P. Sláma ◽  
Miroslav Cieslar

Accumulative Roll Bonding (ARB) is a severe plastic deformation process that allows producing ultrafine-grained materials (UFG). UFG sheets exhibit enhanced strength and very fine grain structure. Foils used as fins in heat exchangers have to be very thin but must exhibit high strength combined with relatively high formability. Thus, materials produced using ARB may fulfil the exacting requirements on foil properties for such applications. The thermal stability of Al-Fe- Mn-Si foils produced using ARB and subsequent cold rolling was studied and compared with conventionally cold rolled (CCR) counterparts. The stability was assessed by isothermal annealing in the temperature range from 200 to 450 °C. Electron back scatter diffraction in a scanning electron microscope and transmission electron microscopy examinations of foils microstructure in the deformed and annealed states allowed the monitoring of structural changes. The magnitude of mechanical properties changes due to annealing was evaluated by microhardness measurements. Significant hardness increase was observed after annealing at 200 °C only in the ARB samples and was assigned to an annealing-induced hardening. The CCR foil exhibits higher non-recrystallized fraction and smaller mean lamellae boundary spacing in the temperature interval of 200-250 °C than ARB foils. The annealing at 450 °C results in identical hardness values and fully recrystallized microstructure of all foils, regardless the method used for their manufacturing. However, the ARB samples show higher stability of the refined substructure than their cold rolled counterparts due to continuous recrystallization occurring in the ARB foils.


Sign in / Sign up

Export Citation Format

Share Document