scholarly journals Analyses of Vibration Signals Generated in W. Nr. 1.0038 Steel during Abrasive Water Jet Cutting Aimed to Process Control

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 345
Author(s):  
Martin Tyč ◽  
Irena M. Hlaváčová ◽  
Pavel Barták

The presented research was aimed at finding a suitable tool and procedure for monitoring undercuts or other problems such as cutting without abrasive or inappropriate parameters of the jet during the abrasive water jet (AWJ) cutting of hard-machined materials. Plates of structural steel RSt 37-2 of different thickness were cut through by AWJ with such traverse speeds that cuts of various qualities were obtained. Vibrations of the workpiece were monitored by three accelerometers mounted on the workpiece by a special block that was designed for this purpose. After detecting and recording vibration signals through the National Instruments (NI) program Signal Express, we processed this data by means of the LabVIEW Sound and Vibration Toolkit. Statistical evaluation of data was performed, and RMS was identified as the parameter most suitable for online vibration monitoring. We focus on the analysis of the relationship between the RMS and traverse speed.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4032
Author(s):  
Libor M. Hlaváč

Research performed by the author in the last decade led him to a revision of his older analytical models used for a description and evaluation of abrasive water jet (AWJ) cutting. The review has shown that the power of 1.5 selected for the traverse speed thirty years ago was influenced by the precision of measuring devices. Therefore, the correlation of results calculated from a theoretical model with the results of experiments performed then led to an increasing of the traverse speed exponent above the value derived from the theoretical base. Contemporary measurements, with more precise devices, show that the power suitable for the traverse speed is essentially the same as the value derived in the theoretical description, i.e., it is equal to “one”. Simultaneously, the replacement of the diameter of the water nozzle (orifice) by the focusing (abrasive) tube diameter in the respective equations has been discussed, because this factor is very important for the AWJ machining. Some applications of the revised model are presented and discussed, particularly the reduced forms for a quick recalculation of the changed conditions. The correlation seems to be very good for the results calculated from the present model and those determined from experiments. The improved model shows potential to be a significant tool for preparation of the control software with higher precision in determination of results and higher calculation speed.


2015 ◽  
Vol 22 (2) ◽  
pp. 315-326 ◽  
Author(s):  
Pavol Hreha ◽  
Agata Radvanska ◽  
Lucia Knapcikova ◽  
Grzegorz M. Królczyk ◽  
Stanisław Legutko ◽  
...  

Abstract The paper deals with a study of relations between the measured Ra, Rq, Rz surface roughness parameters, the traverse speed of cutting head v and the vibration parameters, PtP, RMS, vRa, generated during abrasive water jet cutting of the AISI 309 stainless steel. Equations for prediction of the surface roughness parameters were derived according to the vibration parameter and the traverse speed of cutting head. Accuracy of the equations is described according to the Euclidean distances. The results are suitable for an on-line control model simulating abrasive water jet cutting and machining using an accompanying physical phenomenon for the process control which eliminates intervention of the operator.


2015 ◽  
Vol 809-810 ◽  
pp. 201-206
Author(s):  
Predrag Janković ◽  
Miroslav Radovanović ◽  
Oana Dodun ◽  
Miloš Madić ◽  
Dušan Petković

Abrasive water jet machining is frequently used in industry. It is one of the most versatile processes in the world. The basic advantages of abrasive water jet machining is that no heat affected zones or mechanical stresses are left on an abrasive water jet cut surface, high flexibility and small cutting forces. Although this cutting technology includes many advantages, there are some drawbacks. For instance, abrasive water jet cutting can produce tapered edges on the kerf of workpiece being cut. This can limit the potential applications of abrasive water jet cutting, if further machining of the edges is needed to achieve the engineering tolerance required for the part. The machining parameters have a great influence on these phenomena. The aim of this paper is to investigate the cut quality of EN AW-6060 aluminium alloy sheets under abrasive water jets. The experimental results indicate that the feed rate (nozzle traverse speed) of the jet is a significant parameter on the surface morphology.


2020 ◽  
Vol 867 ◽  
pp. 182-187
Author(s):  
Teguh Dwi Widodo ◽  
Rudianto Raharjo ◽  
Muhammad Zaimi

In this paper, the effect of abrasive water jet cutting process on the surface character of medical implant SS316L was investigated. This research focuses on the effect of traverse speed during abrasive water jet cutting on the surface roughness and topography of medical implant material SS316L. In some study, it has been noted that the roughness of implant material correlates with the healing process of a sufferer in medical application. Furthermore, transverse speed has an important role in the manufacturing process that correlates directly with the ability of technic to produce a product at a definite time. Garnet was used as an abrasive material in this water jet cutting process. The process was taking place in room temperature with 3000Psi of water pressure. In this study, the surface roughness was examined at all point of depth of the cut surface in all of the transverse speed using Mitutoyo SJ 210, while the surface topography observed by Olympus BX53M optical microscope. The study results reveal that traverse speed has a significant effect on the surface roughness at the surface, middle, and bottom of the cut point. The Surface roughness increase as transverse speed.


Author(s):  
S. Saravanan ◽  
V. Vijayan ◽  
A.V. Balan ◽  
T. Sathish ◽  
A. Parthiban

This paper deals a set of studies performed on AA6063-TiC composites produced by adding 3%, 6% and 9% wt. of TiC in aluminium alloy 6063 and processed with abrasive water jet cutting that are formed with garnet abrasive of 80 mesh size. These studies are effectively meant to evaluate the surface roughness (Ra) of abrasive water jet cutting on various compositions of AA6063-TiC produced by stir casting route. Abrasive water jet cutting was carried out on cylindrical samples of various compositions of AA6063-TiC composites by varying traverse speed, stand-off distance and abrasive flow rate at three different levels. The experiments were performed using Taguchi’s L27 orthogonal array. Contribution of these parameters on the Ra was determined by ANOVA and regression analysis to optimize the process parameters for effective machining. Among the interaction effects, traverse speed and stand-off distance combinations contribute more to the Ra. The microstructures of machined surfaces were also analysed by scaning electron microscope images and F-profile plots.


2014 ◽  
Vol 513-517 ◽  
pp. 218-222
Author(s):  
Zheng Long Zou ◽  
Xiong Duan ◽  
Chu Wen Guo

Combining with the electron microscope analysis of the morphology of incision, the mechanism of abrasive water jet cutting metal materials was carried out to explore, for the rational selection of abrasive jet cutting parameters, to extend its application to provide the basis. Study shows that the abrasive water jet cutting metal materials, the material damage mechanism is mainly to yield deformation and failure and shear of grinding damage, grooving formation is mainly caused by falling impact deformation and furrows grinding.


Sign in / Sign up

Export Citation Format

Share Document