scholarly journals Improving Fast Charging-Discharging Performances of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Electronic Conductor LaNiO3 Crystallites

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 396
Author(s):  
Tongxin Li ◽  
Donglin Li ◽  
Qingbo Zhang ◽  
Jianhang Gao ◽  
Long Zhang ◽  
...  

Fast charging-discharging is one of the important requirements for next-generation high-energy Li-ion batteries, nevertheless, electrons transport in the active oxide materials is limited. Thus, carbon coating of active materials is a common method to supply the routes for electron transport, but it is difficult to synthesize the oxide-carbon composite for LiNiO2-based materials which need to be calcined in an oxygen-rich atmosphere. In this work, LiNi0.8Co0.1Mn0.1O2 (NCM811) coated with electronic conductor LaNiO3 (LNO) crystallites is demonstrated for the first time as fast charging-discharging and high energy cathodes for Li-ion batteries. The LaNiO3 succeeds in providing an exceptional fast charging-discharging behavior and initial coulombic efficiency in comparison with pristine NCM811. Consequently, the NCM811@3LNO electrode presents a higher capacity at 0.1 C (approximately 246 mAh g−1) and a significantly improved high rate performance (a discharge specific capacity of 130.62 mAh g−1 at 10 C), twice that of pristine NCM811. Additionally, cycling stability is also improved for the composite material. This work provides a new possibility of active oxide cathodes for high energy/power Li-ion batteries by electronic conductor LaNiO3 coating.

2014 ◽  
Vol 173 ◽  
pp. 391-402 ◽  
Author(s):  
Yana Miroshnikov ◽  
Gal Grinbom ◽  
Gregory Gershinsky ◽  
Gilbert D. Nessim ◽  
David Zitoun

In this manuscript, we report our investigation of anode materials for Li-ion batteries based on silicon–graphene oxide composites. Previous reports in the literature on silicon–graphene oxide (GO) composites as anodes have shown a large discrepancy between the electrochemical properties, mainly capacity and coulombic efficiency. In our research, the surface chemistry of Si nanoparticles has been functionalized to yield a chemical bond between the Si and GO, a further annealing step yields a Si–reduced GO (Si–rGO) composite while controlled experiments have been carried on mechanical mixing of GO and Si. For all samples, including a simple mixing of Si nanoparticles and GO, a high specific capacity of 2000 mA h gSi−1can be achieved for 50 cycles. The main difference between the samples can be observed in terms of coulombic efficiency, which will determine the future of these composites in full Li-ion cells. The Si–rGO composite shows a very low capacity fading and a coulombic efficiency above 99%. Furthermore, the Si–rGO composite can be cycled at very high rate to 20 C (charge in 3 minutes).


Author(s):  
Partha P. Paul ◽  
Chuntian Cao ◽  
Vivek Thampy ◽  
Hans-Georg Steinrück ◽  
Tanvir R. Tanim ◽  
...  

2011 ◽  
Vol 1313 ◽  
Author(s):  
Indranil Lahiri ◽  
Sung-Woo Oh ◽  
Yang-Kook Sun ◽  
Wonbong Choi

ABSTRACTRechargeable batteries are in high demand for future hybrid vehicles and electronic devices markets. Among various kinds of rechargeable batteries, Li-ion batteries are most popular for their obvious advantages of high energy and power density, ability to offer higher operating voltage, absence of memory effect, operation over a wider temperature range and showing a low self-discharge rate. Researchers have shown great deal of interest in developing new, improved electrode materials for Li-ion batteries leading to higher specific capacity, longer cycle life and extra safety. In the present study, we have shown that an anode prepared from interface-controlled multiwall carbon nanotubes (MWCNT), directly grown on copper current collectors, may be the best suitable anode for a Li-ion battery. The newly developed anode structure has shown very high specific capacity (almost 2.5 times as that of graphite), excellent rate capability, nil capacity degradation in long-cycle operation and introduced a higher level of safety by avoiding organic binders. Enhanced properties of the anode were well supported by the structural characterization and can be related to very high Li-ion intercalation on the walls of CNTs, as observed in HRTEM. This newly developed CNT-based anode structure is expected to offer appreciable advancement in performance of future Li-ion batteries.


Nano Letters ◽  
2014 ◽  
Vol 14 (7) ◽  
pp. 4083-4089 ◽  
Author(s):  
Mi-Hee Park ◽  
Mijung Noh ◽  
Sanghan Lee ◽  
Minseong Ko ◽  
Sujong Chae ◽  
...  

Author(s):  
Ansor Prima Yuda ◽  
Pierre Yosia Edward Koraag ◽  
Ferry Iskandar ◽  
Hutomo Suryo Wasisto ◽  
Afriyanti Sumboja

With a remarkable theoretical specific capacity of ~4200 mAh g-1, silicon anode is at the forefront to enable lithium-ion batteries (LIBs) with ultra-high energy density. However, we have yet to...


2015 ◽  
Vol 245 ◽  
pp. 153-158 ◽  
Author(s):  
Denis P. Opra ◽  
Anatoly B. Podgorbunsky ◽  
Sergey V. Gnedenkov ◽  
Sergey L. Sinebryukhov ◽  
Alexander A. Sokolov ◽  
...  

Two-phase Al(OH)3–PbSnF4 composites (concentrations of aluminum hydroxide are equal to 5 wt.%, 15 wt.% and 30 wt.%) has been prepared by high-energy ball-milling method. The materials were employed as anodes in Li-ion batteries. It was established that PbSnF4-based systems yield high initial capacity of 800–1100 mAh g–1. The reversible specific capacity of Al(OH)3–PbSnF4 (aluminum hydroxide – 15 wt.%) after 10-fold charge–discharge cycling in the range of 2.5–0.005 V attains 120 mAh g–1, while the specific capacity of pure PbSnF4 is equal only to 20 mAh g–1. It has been shown that the deviation from 15 wt.% concentration of Al (OH)3 decreases cycling stability of lead fluorostannate (II).


Author(s):  
Xiuling Wang

Abstract Li-ion battery is becoming a popular energy storage device in Hybrid Electric Vehicles (HEV) and Electric Vehicles (EV) due to its high energy density, high voltage and low self-discharge rate. The major concerns in designing Li-ion batteries are their life, performance and safety, which have close relations to their thermal behaviors. The temperature of Li-ion batteries rises during charge/discharge process. It goes faster especially with high charge/discharge rate during fast charging procedure. In this research, CFD models are developed based on ANSYS/FLUENT MSMD battery model coupled with electrochemical submodel-Newman, Tiedeman, Gu and Kim (NTGK) empirical model. Detailed simulation results are obtained in battery thermal and electrochemical behavior for different bi-cell electrode and current collector tab configurations. The temperature, potential, current density distribution at the battery length scale are determined, temperature gradient distribution is computed, and the maximum temperature at different discharge rate are also compared. The thermal investigation can provide valuable input for Li-ion battery design and analysis, especially for fast-charging batteries where heat distribution and cooling is critical for the battery design.


2012 ◽  
Vol 22 (29) ◽  
pp. 14661 ◽  
Author(s):  
Shu Zhang ◽  
Zhan Lin ◽  
Liwen Ji ◽  
Ying Li ◽  
Guanjie Xu ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (80) ◽  
pp. 50973-50980 ◽  
Author(s):  
Juan Wang ◽  
Chao Li ◽  
Zhenyu Yang ◽  
Deliang Chen

Novel MnO/CNFs@G membrane by electrospinning and APCVD; this anode with high specific capacity and longest cycling life is of great interest to high energy thin film or flexible Li-ion battery.


Sign in / Sign up

Export Citation Format

Share Document