scholarly journals Effect of Rolling Route on Microstructure and Tensile Properties of Twin-Roll Casting AZ31 Mg Alloy Sheets

Materials ◽  
2016 ◽  
Vol 9 (6) ◽  
pp. 433 ◽  
Author(s):  
Dan Luo ◽  
Yue Pan ◽  
Hui-Yuan Wang ◽  
Li-Guo Zhao ◽  
Guo-Jun Liu ◽  
...  
2010 ◽  
Vol 443 ◽  
pp. 45-50 ◽  
Author(s):  
Hyoung Wook Kim ◽  
Jae Hyeng Cho ◽  
Cha Yong Lim ◽  
Suk Bong Kang

High strength Al-Mg alloy strips with high Mg contents (5-10wt%Mg) were successfully fabricated by twin roll casting. In order to get a good surface quality of Al-Mg strips, an optimum process condition was investigated in this experiment. The morphology of the cast nozzle and the roll separate force during twin roll casting was important to improve the surface quality of the strip and homogeneity of the cast structure through the thickness. The size of intermetallic particle like Al-Fe compounds was reduced down to 1~2m due to a high cooling rate of Al melt during strip casting. In addition, the dendrite structure was very fine and the segregation of Al8Mg5 phase between grains was remarkably reduced. Therefore, the Al-Mg strips have good workability during additional cold/warm rolling processes. After annealing, the rolled sheets have superior tensile properties to a commercial high strength Al-Mg alloy sheet.


2019 ◽  
Vol 179 ◽  
pp. 107887 ◽  
Author(s):  
Xinliang Yang ◽  
Jayesh B. Patel ◽  
Yan Huang ◽  
Chamini L. Mendis ◽  
Zhongyun Fan

2013 ◽  
Vol 765 ◽  
pp. 756-760
Author(s):  
Xiao Hui Xue ◽  
Yun Wang ◽  
Ian Stone ◽  
Zhong Yun Fan

AZ31 Mg-alloy plates produced by both conventional twin roll casting (TRC) and the melt-conditioned TRC (MC-TRC) processes were used to compare the hot cracking susceptibility in the joints of one bead-on-plate TIG welds. The plates cast with melt shearing were employed as the welding wire. The results showed that the MC-TRC plate has higher liquefied cracking resistance in the heat affected zone (HAZ) than that of the TRC plate. The improved liquefied cracking resistance of the MC-TRC plate can be attributed to the well dispersed and uniformly distributed eutectic regions in the MC-TRC microstructure.


2009 ◽  
Vol 618-619 ◽  
pp. 467-470 ◽  
Author(s):  
A.K. Prasada Rao ◽  
K.H. Kim ◽  
J.H. Bae ◽  
Geun Tae Bae ◽  
Dong Hyuk Shin ◽  
...  

An attempt has been made to clad Mg alloy with Al by twin-roll casting. This was done by inserting an Al sheet between the roll and the Mg alloy melt during twin-roll casting. Microstructural investigation across the transverse section of the as-cast Al-clad Mg alloy sheet reveals a very good interfacial bonding between Al and the base Mg alloy. Annealing of the Al-clad Mg alloy sheet results in the formation of layers of various intermetallic phases along the Mg/Al interface. Subsequent rolling of the as-annealed sheet significantly improves the formability of the reaction zone, as evidenced by the cracking of the base Mg alloy before the cracking of the reaction zone.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Qingshan Yang ◽  
Jiahong Dai ◽  
Sensen Chai ◽  
Daliang Yu ◽  
Bin Jiang ◽  
...  

The deformation behavior and microstructural evolution of twin-roll-casting AZ31 Mg alloy sheets were investigated via hot compression tests at 0°, 5°, and 10° from the normal direction. Compression strains of 5%, 15%, 25%, and 35% were employed at high temperatures of 450°C and 500°C. The flow stress as well as the difference in the flow stress associated with different sampling directions decreased when the temperature was increased. Furthermore, the volume fraction of dynamically recrystallized grains increased with increasing deformation, whereas the average grain size decreased. The DRX grain size and the volume fraction of dynamically recrystallized grains increased with increasing deformation temperature. During ultrahigh temperature compression, the effect of sampling direction on the compression microstructure is relatively small.


2021 ◽  
Vol 13 (9) ◽  
pp. 1771-1780
Author(s):  
Yu-Qing Li ◽  
Tong Wang ◽  
Yun-Tao Liu ◽  
Dong-Feng Chen ◽  
Kai Sun ◽  
...  

The wide magnesium (Mg) alloy sheets produced by twin-roll casting (TRC) are prone to have an inhomogeneous microstructure and basal texture. Texture has a significant effect on the properties of Mg alloy sheets for the processes after TRC, which can be greatly modified by alloy composition. However, systematic studies on the bulk texture of TRCed Mg alloy sheets using neutron diffraction are lacking. In this study, neutron diffraction was used to explore the bulk textures in different positions of the Mg, Mg–Al–Zn, and Mg–Al–Sn–Zn alloy sheets produced by TRC, besides microstructure and micro-texture analysis using field emission scanning electron microscopy and electron backscattering diffraction. The influence of alloy composition on the microstructure and texture evolution of TRCed Mg alloy sheets is explored and discussed. The TRCed pure Mg sheet possesses a relatively strong basal texture, and the texture distribution is inhomogeneous; while TRCed Mg–Al–Sn–Zn alloy sheets feature much weaker textures and a relatively homogenous distribution in different positions. The present study provides guidance for the control of texture via tailoring alloy compositions, which provides candidate Mg alloys suitable for the TRC process.


Sign in / Sign up

Export Citation Format

Share Document