scholarly journals A Study on the Cavitation and Pressure Pulsation Characteristics in the Impeller of an LNG Submerged Pump

Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Wei Li ◽  
Shuo Li ◽  
Leilei Ji ◽  
Xiaofan Zhao ◽  
Weidong Shi ◽  
...  

Based on CFD analysis technology, this paper studies the cavitation performance of an LNG submerged pump and the pressure pulsation characteristics under cavitation excitation. The variation laws of the waveform, amplitude and frequency of the pressure pulsation in the impeller of the LNG submerged pump under different flow rates and NPSHa are also analysed. By calculating the root mean square of the pressure coefficient of the low-frequency pulsation, the influence of the aggravation process of cavitation on the low-frequency pulsation in the LNG submerged pump is quantitatively analysed, and the characteristics of the pressure pulsation in the LNG submerged pump under the cavitation condition are revealed. The results show that with the increase in flow rate, the pressure pulsation in the impeller becomes stronger, periodically, and the amplitude decreases. The influence of cavitation on the pressure pulsation in the primary impeller is greater than that in the secondary impeller. When critical cavitation occurs, the low-frequency signal amplitude of pressure pulsation in the primary impeller increases and exceeds the blade frequency, becoming the main frequency.

2021 ◽  
Vol 321 ◽  
pp. 04017
Author(s):  
Fanjie Deng ◽  
Jianping Yuan ◽  
Minquan Liao ◽  
Mengfei Chen ◽  
Han Zhu ◽  
...  

Most of the research on the cavitation with entrained air has focused on the military direction, but it ,about centrifugal pumps, which is relevant to people's livelihood, is still relatively lacking. In order to study the basic law of the development of cavitation inside centrifugal pumps under aeration conditions, a test bench suitable for cavitation experiments with incoming flow containing gas was obtained. Furthermore, a single-stage single-suction 6-blade centrifugal pump was used as the research object to conduct pressure pulsation experiments under cavitation condition when the incoming flow was 1.0% air viod fraction at 2900r/min-50m3/h. The results showed that: After cavitation happened, the greater aeration content will deteriorate the pump's anti-cavitation performance, but the head curve is more gentle in falling down compared to natural cavitation. Hence aeration has a beneficial effect on the performance degradation of the pump under the cavitation condition. At the same time, before the cavitation number drops to the fracture cavitation number of the pump, aeration has improvement in the efficiency of the pump in different degrees , especially in the situation with the ventilated rate of 1.0%. The main frequency of pressure pulsation at the inlet and outlet of the test pump after aeration is dominated by the blade frequency. The shaft frequency signal at the outlet gradually decreases with the cavitation number lessened. Moreover the amplitude of the blade frequency grows slightly with the reduction of the cavitation number. But it tends to soar when the cavitation number is less than the fracture cavitation number.


Author(s):  
Wenguang Li ◽  
Yuliang Zhang

In this study, the cavitating flow and cavitation performance are studied by employing the computational fluid dynamics method in the turbine mode of a centrifugal pump at part-load, best efficiency, and over-load points. The flow models are validated in the pump mode under noncavitation condition. The relationships between the performance variables and net positive suction head available are obtained, and the corresponding net positive suction heads required are extracted. The flow patterns, location, and shape of the cavity are illustrated; the pressure coefficient profiles on the blade surfaces are clarified and compared with those in the pump mode under both noncavitation and critical cavitation conditions. The cavitation performance and flow pattern as well as cavity shape in the turbine mode are distinguishably different from the pump mode. It is found out that the cavitation behavior in the turbine mode exhibits three notable features: a lower and less flow rate-dependent net positive suction head required, a flow rate-dependent suppressed rotational flow in the draft tube, as well as a rotational and extendable cavitating rope originated from the impeller cone. The results and methods can be important and useful for the design and selection of a centrifugal pump as turbine.


2014 ◽  
Vol 651-653 ◽  
pp. 2172-2176
Author(s):  
Yun Liang Meng ◽  
Chang Xing Pei ◽  
Dong Wu Li

The optimum vibrational resonance in a time-delay bistable system driven by bihiarmonic signals is discussed in this paper. The theoretically expression for the response amplitude gain of low frequency signal in the time-delay bistable system is deduced, and the effects of time delay parameter on the optimum vibrational resonance peak and the required amplitude of high frequency signal are investigated. It is shown that the optimum vibrational resonance can be achieved by adjusting the high frequency signal amplitude and time delay parameter jointly. Meanwhile, the optimum vibrational resonance appeared periodically with time delay parameter and the period is equal to the period of low-frequency signal. The amplitude of high-frequency signal required for the optimum vibrational resonance can be fixed or varied with different time delay parameter depending on the ratio of the frequencies between biharmonic signals.


Author(s):  
Yang Yang ◽  
Ling Zhou ◽  
Yong Han ◽  
Jianwei Hang ◽  
Wanning Lv ◽  
...  

Electrical Submersible Pumps (ESP) are one of the most reliable and efficient ways to lift oil or water from the ground or deep-sea to the surface. How to reduce the pressure pulsation and increase reliability is a challenging issue in the ESP design processes. In this study, a typical three-stage ESP model was selected as the research object. Based on numerical calculations and validation tests, the flow-field distribution mechanism within the dynamic and static interference zones of multi-stage ESP was investigated. Meanwhile, the inter-stage variability of pressure pulsation characteristics within the main hydraulic components was explored by Morlet continuous wavelet transform. The results showed that the numerical predicted performance has an excellent agreement with the experimental results, which confirms the accuracy of the numerical calculations. The time-domain characteristics of pressure pulsation at each monitoring location within the ESP showed high disorder due to the inter-stage propagation and coupling of the pressure pulsations. The low-frequency signal in the pressure pulsation signal had not only a cascading superposition of intensity, but also a significant phase difference. It was found that the main form of propagation between pulsating signal levels is the low-frequency signal. This work may facilitate the reduction or control of the pressure pulsations and thus improve the operation stability of ESP.


Author(s):  
Weihui Xu ◽  
Xiaoke He ◽  
Xiao Hou ◽  
Zhihao Huang ◽  
Weishu Wang

AbstractCavitation is a phenomenon that occurs easily during rotation of fluid machinery and can decrease the performance of a pump, thereby resulting in damage to flow passage components. To study the influence of wall roughness on the cavitation performance of a centrifugal pump, a three-dimensional model of internal flow field of a centrifugal pump was constructed and a numerical simulation of cavitation in the flow field was conducted with ANSYS CFX software based on the Reynolds normalization group k-epsilon turbulence model and Zwart cavitation model. The cavitation can be further divided into four stages: cavitation inception, cavitation development, critical cavitation, and fracture cavitation. Influencing laws of wall roughness of the blade surface on the cavitation performance of a centrifugal pump were analyzed. Research results demonstrate that in the design process of centrifugal pumps, decreasing the wall roughness appropriately during the cavitation development and critical cavitation is important to effectively improve the cavitation performance of pumps. Moreover, a number of nucleation sites on the blade surface increase with the increase in wall roughness, thereby expanding the low-pressure area of the blade. Research conclusions can provide theoretical references to improve cavitation performance and optimize the structural design of the pump.


Author(s):  
Sadao Kurosawa ◽  
Kiyoshi Matsumoto

In this paper, numerical method for predicting critical cavitation performance in a hydraulic turbine is presented. The prediction method is based on unsteady cavitation flow analysis to use bubble two-phase flow model. The prediction of the critical cavitation performance was carried out for the aixal hydraulic turbine and the francis turbine as a typical examples. Results compared to the experiment showed a good agreement for the volume of cavity and the performance drop off and it was recognized that this method could be used as an engineering tool of a hydraulic turbine development.


Sign in / Sign up

Export Citation Format

Share Document