scholarly journals General-Purpose and Scalable Internal-Combustion Engine Model for Energy-Efficiency Studies

Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 26
Author(s):  
Mika Laurén ◽  
Giota Goswami ◽  
Anna Tupitsina ◽  
Suraj Jaiswal ◽  
Tuomo Lindh ◽  
...  

Hybrid powertrains that combine electric machines and internal-combustion engines offer substantial opportunities to increase the energy efficiency and minimize the exhaust emissions of vehicles and nonroad working machines. Due to the wide range of applications of such powertrains, simulation tools are used to evaluate and compare the energy efficiency of hybrid powertrains for application-specific working cycles in virtual environments. Therefore, the accurate modeling of the powertrain components of a hybrid system is important. This paper presents an agile calculation tool that can generate realistic fuel consumption data of a scalable diesel engine. This method utilizes a simple efficiency model of the combustion and crank train friction model to generate the fuel consumption map in the operating area of a typical diesel engine. The model parameters are calibrated to produce accurate fuel consumption data in the initial phase of system-level simulations. The proposed method is also validated by using three real engine datasets, and the comparison of results is presented.

2021 ◽  
pp. 31-37
Author(s):  
A.P. Marchenko ◽  
I.V. Parsadanov ◽  
A.V. Savchenko

Today, internal combustion engines are very common as energy sources in many countries around the world. This makes the tasks related to improving the environmental performance of internal combustion engines relevant. The introduction of alternative fuels in internal combustion engines is an effective way to reduce their negative impact on the environment. One of the most available and widespread alternative fuels for diesels is a water-fuel emulsion. The use of water-fuel emulsion makes it possible to reduce the specific fuel consumption of petroleum origin, as well as to achieve a significant reduction in emissions of harmful substances from diesel exhaust. However, due to differences in the physical properties of traditional diesel fuel and water-fuel emulsion, the course of the processes of mixture formation and combustion in the diesel cylinder changes significantly. This may be due to the emergence of a reserve for further improvement of the diesel engine by selecting the parameters of the diesel engine running on water-fuel emulsion. The study selected the following parameters for variation: compression ratio, boost pressure, duration of the injection process, injection timing. The article considers the influence of these parameters on the Brake-specific fuel consumption of diesel, the specific emission of particulate matter and nitrogen oxides, the maximum pressure in the cylinder. The nature and degree of influence of changes in the parameters of the diesel engine on its performance was determined using mathematical modeling. It should be noted that the influence of each of the parameters selected for variation is quite complex and often ambiguous. That is, when some indicators improve, others may deteriorate somewhat. Therefore, in order to select the most rational parameters of a diesel engine running on a water-fuel emulsion, it is necessary to simultaneously assess the economic and environmental performance of the diesel engine. For this assessment, a method was used to determine a comprehensive fuel and environmental criterion for a diesel engine running on a water-fuel emulsion. Thus, the article shows the potential for comprehensive improvement of environmental and economic performance of the diesel engine by choosing rational parameters.


2021 ◽  
Vol 312 ◽  
pp. 07023
Author(s):  
Davide Di Battista ◽  
Fabio Fatigati ◽  
Marco Di Bartolomeo ◽  
Diego Vittorini ◽  
Roberto Cipollone

The high viscosity of the lubricant oil in internal combustion engines at cold starts is responsible for poor friction reduction and inadequate thermal stabilization of metallic masses and represents a major bottleneck in the efforts to reduce specific fuel consumption and pollutant emissions. Consequently, the possibility of integrating techniques for proper thermal management of the lubricant oil on internal combustion engines is of utmost importance to both homologation and daily on-road operation. Main options for reducing the warm-up time for the engine lubricant are the upgrade of the engine cooling and lubricating circuits, dedicated heating, different flow management of the oil/coolant heat exchanger, a renewed design of the oil sump or a thermal storage section to increase the oil temperature in the early phases of the warm up. The paper presents a new opportunity, using a hot storage medium to heat up the oil in the early phase of a driving cycle. A certain quantity of hot water, so, is stored in a tank, which can be used to warm up the lubricating oil when the engine is started up. The heating of this service water can be done by using exhaust gas heat, which is always wasted in the atmosphere. The activity is realized on an IVECO 3.0 L light-duty diesel engine, during a transient cycle (NEDC) on a dynamometric test bench. The benefits in terms of both fuel consumption and CO2 emissions reduction. The characterization of the backpressure associated with an eventual additional heat exchangers and the more complex layout of the oil circuit is assessed, as well as the transient effects produced by the faster oil warm-up and oil-coolant interaction on the engine thermal stabilization.


2021 ◽  
Author(s):  
Wojciech Poprawski ◽  
Mieczysław Struś

One way to reduce the negative impact of internal combustion engines on the environment is to use advanced biofuels, e.g. Bioxdiesel which is a mixture of Fatty Acid Ethyl Esters (FAEE), bioethanol and standard diesel, with vast majority of the content with biological origin. The FAEE are promising content of the Diesel-Biodiesel-Ethanol blends. The FAEE can be obtained from both vegetable, eg. rapeseed oil and animal fats, as well as waste fats. The article presents research results on the efficiency of a turbocharged Diesel engine equipped with a Common Rail fuel injection system which was powered by Bioxdiesel fuel and for comparison purposes also fed with standard fuel. The effects study showed that even with a lower calorific value of Bioxdiesel fuel when compared to that for the standard diesel, the overall engine efficiency obtained during the test results was comparable to the standard fuel. Due to the presence of oxygen in the particles of the biofuel, and thus more efficient combustion processes, for a wide range of the minor engine load, the fuel consumption of Bioxdiesel and Diesel fuels was comparable to each other, while at higher engine load the fuel consumption of Bioxdiesel was lower than that for the other fuel.


2019 ◽  
pp. 28-37
Author(s):  
Andriy Marchenko ◽  
Volodymyr Shpakovskyy ◽  
Volodymyr Volikov

Taking into account the oil resources depletion the requirements to fuel consumption of internal combustion engines are now increasing as well as to their reliability and durability. With the continual increase in the number of internal combustion engines in operation, along with the problem of parts of the cylinder piston group wearing out has caused exhaust from such engines to be one of the main source of harmful pollutant emissions in cities. Therefore, environmental requirements have in turn increased dramatically. The engine resource and its efficiency largely depend on the process of fuel combustion in the combustion chamber. Experimental studies aimed to improve the working process on diesel engines by piston insulation have shown an effective decrease in fuel consumption by reducing heat loss and more complete fuel combustion. When oxide ceramic coatings were used on the piston and cylinder head, the maximum power increased and the specific fuel consumption decreased. However ceramic coatings are not widely used due to their peeling. We have developed a technology for the galvanic plasma treatment of pistons, which made it possible to obtain on the pistons surface made of aluminum alloys a ceramic corundum layer with high adhesion to the base metal that does not peel and has electret properties. In 1993, pistons with a corundum surface layer were installed in a shunting diesel locomotive and life-time running tests were conducted. Such pistons increased wear resistance, reduced the wear of cylinder liners, increased the strength of the annular jumpers, and were not prone to burnouts and scuffing. They provided an increase in the resource of the cylinder-piston group of the diesel engine by more than 125 thousand engine hours. The paper provides an analysis of the effect of corundum pistons thermal insulation on significant increasing the, engine power and fuel consumption reduction. Basing on experimental bench studies of a gasoline engine, a tractor diesel engine and long-term operational life tests of diesel engines, an attempt had been made to explain the reasons for the improvement in the engines’ efficiency.


Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Saša Milojević ◽  
Radivoje Pešić

Compression ratio has very important influence on fuel economy, emission, and other performances of internal combustion engines. Application of variable compression ratio in diesel engines has a number of benefits, such as limiting maximal in cylinder pressure and extended field of the optimal operating regime to the prime requirements: consumption, power, emission, noise, and multifuel capability. The manuscript presents also the patented mechanism for automatic change engine compression ratio with two-piece connecting rod. Beside experimental research, modeling of combustion process of diesel engine with direct injection has been performed. The basic problem, selection of the parameters in double Vibe function used for modeling the diesel engine combustion process, also performed for different compression ratio values. The optimal compression ratio value was defined regarding minimal fuel consumption and exhaust emission. For this purpose the test bench in the Laboratory for Engines of the Faculty of Engineering, University of Kragujevac, is brought into operation.


2017 ◽  
Author(s):  
Luiz Carlos Daemme ◽  
Renato Penteado ◽  
Paulo Smith Schneider ◽  
Bárbara Pacheco da Rocha ◽  
Bernardo dos Santos Piccoli ◽  
...  

2021 ◽  
pp. 146808742110442
Author(s):  
Sebastian Welscher ◽  
Mohammad Hossein Moradi ◽  
Antonino Vacca ◽  
Peter Bloch ◽  
Michael Grill ◽  
...  

Due to increasing climate awareness and the introduction of much stricter exhaust emission legislation the internal combustion engine technology faces major challenges. Although the development and state of technology of internal combustion engines generally reached a very high level over the last years those need to be improved even more. Combining water injection with a diesel engine, therefore, seems to be the next logical step in developing a highly efficient drive train for future mobility. To investigate these potentials, a comprehensive evaluation of water injection on the diesel engine was carried out. This study covers >560 individual operating points on the test bench. The tests were carried out on a single-cylinder derived from a Euro 6d four-cylinder passenger car with the port water injection. Furthermore, a detailed pressure trace analysis (PTA) was performed to evaluate various aspects regarding combustion, emission, etc. The results show no significant effects of water injection on the combustion process, but great potential for NOx reduction. It has been shown that with the use of water injection at water-to-fuel rates of 25%, 50%, and 100%, NOx reduction without deterioration of soot levels can be achieved in 62%, 40%, and 20% of the experiments, respectively. Furthermore, water injection in combination with EGR offers additional reduction in NOx emissions.


Author(s):  
J. L. Wang ◽  
J. Y. Wu ◽  
C. Y. Zheng

CCHP systems based on internal combustion engines have been widely accepted as efficient distributed energy resources systems. CCHP systems can be efficient mainly because that the waste heat of engines can be recovered and used. If the waste heat is not used, CCHP systems may not be beneficial choices. PV-wind systems can generate electricity without fuel consumption, but the electric output depends on the weather, which is not reliable. A PV-wind system can be integrated into a CCHP system to form a higher efficient energy system. Actually, a hybrid energy system based on PV-wind devices and internal combustion engines has been studied by many researchers. But the waste heat of the engine is seldom considered in the previous work. Researches show that, 20∼30% energy can be converted into electricity by a small size engine while more than 70% is released. If the waste heat is not recovered, the system cannot reach a high efficiency. This work aims to analyze a hybrid CCHP system with PV-wind devices. Internal combustion engines are the prime movers whose waste heat is recovered for house heating or driving absorption chillers. PV-wind devices are added to reduce the fuel consumption and total cost. The optimal design method and optimal operation strategy are proposed basing on hourly analyses. Influences of the device cost and fuel price on the optimal dispatch strategies are discussed. Results show that all of the excess energy from the PV-wind system is not worth being stored by the battery. The hybrid CCHP system can be more economical and higher efficient in the studied case.


Sign in / Sign up

Export Citation Format

Share Document