scholarly journals Studying the Effect of Working Conditions on WEDM Machining Performance of Super Alloy Inconel 617

Machines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 54
Author(s):  
Stefan Dzionk ◽  
Mieczysław S. Siemiątkowski

Wire electrical discharge machining (WEDM) has been, for many years, a precise and efficient non-conventional manufacturing solution in various industrial applications, mostly involving the use of hard-to-machine materials like, among others, the Inconel super alloys. The focus of the present study is on exploring the effect of selected control parameters, including pulse duration, pulse-off time and the dielectric flow pressure on the WEDM process performance characteristics of Inconel 617 material, such as: volumetric material removal rate (MRR), the dimensional accuracy of cutting (reflected by the kerf width) and surface roughness (SR). The research experiment has been designed and carried out using the response surface methodology (RSM) accordingly with the Box–Behnken design scheme. The results of experiments derived in the form of a fitted regression model have been subjected to the analysis of variance (ANOVA) tests. Thus, the variable process parameters and the relevant interactions between them, characterized by a significant influence on the values of the derived output responses, could be explicitly determined.

2015 ◽  
Vol 656-657 ◽  
pp. 335-340 ◽  
Author(s):  
Fang Pin Chuang ◽  
Yan Cherng Lin ◽  
Hsin Min Lee ◽  
Han Ming Chow ◽  
A. Cheng Wang

The environment issue and green machining technique have been induced intensive attention in recent years. It is urgently need to develop a new kind dielectric to meet the requirements for industrial applications. The aim of this study is to develop a novel dielectric using gas media immersed in deionized water for electrical discharge machining (EDM). The developed machining medium for EDM can fulfill the environmentally friendly issue and satisfy the demand of high machining performance. The experiments were conducted by this developed medium to investigate the effects of machining parameters on machining characteristics in terms of material removal rate (MRR) and surface roughness. The developed EDM medium revealed the potential to obtain a stabilizing progress with excellent machining performance and environmentally friendly feature.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 256
Author(s):  
S Rajamanickam ◽  
R Palani ◽  
V Sathyamoorthy ◽  
Muppala Jagadeesh Varma ◽  
Shaik Shaik Mahammad Althaf ◽  
...  

As on today, Electrical Discharge Machining (EDM) is world famous unconventional machining process for electrically conductive materials. In this project work, Ti-6Al-4V is performed in electrical discharge machining using differently shaped (circular and convex) copper electrode. The machining parameters considered are the pulse on- time, pulse off-time, voltage and current to investigate machining characteristics like material removal rate and tool wear rate. Taguchi method is applied to frame experimental design. Ti-6Al-4V finds wide usage in industrial applications such as marine, aerospace, bio-medical and so on. 


2018 ◽  
Vol 7 (2.7) ◽  
pp. 714 ◽  
Author(s):  
SK Khadar Basha ◽  
Murahari Kolli ◽  
M V.Jagannadha Raju

Due to development in machining science the use of composites and alloys is a great deal for every industry. Hastelloy C276 the most versatile corrosion resistant nickel based super alloy which is used for industrial applications is considered for doing the            experiments .The high nickel and molybdenum content provides better corrosion resistance at extreme environments. In this report, the experiments are performed by using Taguchi L18 technique and their results are used for performance of each process parameters on their output responses. The process parameters considered for experimentation are discharge current, pulse- on- time, type of electrode and pulse off time for the output responses of material removal rate and surface roughness. Eco-friendly (drinking water) is used as a dielectric fluid. The experiments are designed and conducted using Taguchi L18 technique and analyze the influence of each process parameters on machining performance characteristics. Further, mathematical equations were developed using the statistical software MINITAB17.0.ANOVA is used for analyzing the experimental results obtained. It was observed from the response table that the average values of MRR and SR for pulse on time, discharge current, electrode are identified as important process parameters.  


2019 ◽  
Vol 14 (2) ◽  
pp. 430-455 ◽  
Author(s):  
Shankar Chakraborty ◽  
Prasenjit Chatterjee ◽  
Partha Protim Das

PurposeTo meet the requirements of high-dimensional accuracy and surface finish of various advanced engineering materials for generating intricate part geometries, non-traditional machining (NTM) processes have now become quite popular in manufacturing industries. To explore the fullest machining capability of these NTM processes, it is often required to operate them while setting their different controllable parameters at optimal levels. This paper aims to present a novel approach for selection of the optimal parametric mixes for different NTM processes in order to assist the concerned process engineers.Design/methodology/approachIn this paper, design of experiments (DoE) and technique for order preference by similarity to ideal solution (TOPSIS) are combined to develop the corresponding meta-models for identifying the optimal parametric combinations of two NTM processes, i.e. electrical discharge machining (EDM) and wire electrical discharge machining (WEDM) processes with respect to the computed TOPSIS scores.FindingsFor EDM operation on Inconel 718 alloy, lower settings of open circuit voltage and pulse-on time and higher settings of peak current, duty factor and flushing pressure will simultaneously optimize all the six responses. On the other hand, for the WEDM process, the best machining performance can be expected to occur at a parametric combination of zinc-coated wire, lower settings of pulse-on time, wire feed rate and sensitivity and intermediate setting of pulse-off time.Practical implicationsAs the development of these meta-models is based on the analysis of the experimental data, they are expected to be more practical, being immune to the introduction of additional parameters in the analysis. It is also observed that the derived optimal parametric settings would provide better values of the considered responses as compared to those already determined by past researchers.Originality/valueThis DoE–TOPSIS method-based approach can be applied to varieties of NTM as well as conventional machining processes to determine the optimal parametric combinations for having their improved machining performance.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 148
Author(s):  
Suppawat Chuvaree ◽  
Kannachai Kanlayasiri

This research investigates the effect of machining parameters on material removal rate, electrode wear ratio, and gap clearance of macro deep holes with a depth-to-diameter ratio over four. The experiments were carried out using electrical discharge machining with side flushing and multi-aperture flushing to improve the machining performance and surface integrity. The machining parameters were pulse on-time, pulse off-time, current, and electrode rotation. Response surface methodology and the desirability function were used to optimize the electrical discharge machining parameters. The results showed that pulse on-time, current, and electrode rotation were positively correlated with the material removal rate. The electrode wear ratio was inversely correlated with pulse on-time and electrode rotation but positively correlated with current. Gap clearance was positively correlated with pulse on-time but inversely correlated with pulse off-time, current, and electrode rotation. The optimal machining condition of electrical discharge machining with side flushing was 100 µs pulse on-time, 20 µs pulse off-time, 15 A current, and 70 rpm electrode rotation; and that of electrical discharge machining with multi-aperture flushing was 130 µs, 2 µs, 15 A, and 70 rpm. The novelty of this research lies in the use of multi-aperture flushing to improve the machining performance, enable a more uniform GC profile, and minimize the incidence of recast layer.


2016 ◽  
Vol 852 ◽  
pp. 212-217 ◽  
Author(s):  
S.K. Dinesh Kumar ◽  
R. Selvanayagam ◽  
M. Sivakumar ◽  
S. Krishnaraj

Wire electrical discharge machine (WEDM) is extensively used in machining of conductive material where precision is of prime importance. Machining operation in WEDM is treated as a challenging one because improvement of more than one Machining performance characteristics are sought to obtain precision work. This project illustrates the implementation of Taguchi technique to select the best optimal machining parameters of WEDM process using Copper powders. In general the machining parameters namely metal removal rate and the surface roughness are determined in WEDM process. The machining material chosen for the experiment is HCHCr alloy steel. Experiments were conducted as per Taguchi’s L18 orthogonal array under different cutting conditions of pulse on-time, pulse off-time, current and frequency and the results are compared. The level of significance of the machining parameters on the output characteristics is identified by Analysis of Variance. Finally this research concludes that the copper powder suspended demineralized water when used as dielectric gives higher MRR and lower Ra. Taguchi optimization is carried out to find the best combination of machining parameters to obtain the desired result


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7408
Author(s):  
Kishan Fuse ◽  
Arrown Dalsaniya ◽  
Dhananj Modi ◽  
Jay Vora ◽  
Danil Yurievich Pimenov ◽  
...  

Titanium and its alloys exhibit numerous uses in aerospace, automobile, biomedical and marine industries because of their enhanced mechanical properties. However, the machinability of titanium alloys can be cumbersome due to their lower density, high hardness, low thermal conductivity, and low elastic modulus. The wire electrical discharge machining (WEDM) process is an effective choice for machining titanium and its alloys due to its unique machining characteristics. The present work proposes multi-objective optimization of WEDM on Ti6Al4V alloy using a fuzzy integrated multi-criteria decision-making (MCDM) approach. The use of MCDM has become an active area of research due to its proven ability to solve complex problems. The novelty of the present work is to use integrated fuzzy analytic hierarchy process (AHP) and fuzzy technique for order preference by similarity to ideal situation (TOPSIS) to optimize the WEDM process. The experiments were systematically conducted adapting the face-centered central composite design approach of response surface methodology. Three independent factors—pulse-on time (Ton), pulse-off time (Toff), and current—were chosen, each having three levels to monitor the process response in terms of cutting speed (VC), material removal rate (MRR), and surface roughness (SR). To assess the relevance and significance of the models, an analysis of variance was carried out. The optimal process parameters after integrating fuzzy AHP coupled with fuzzy TOPSIS approach found were Ton = 40 µs, Toff = 15 µs, and current = 2A.


Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 469 ◽  
Author(s):  
Mustafa Saleh ◽  
Saqib Anwar ◽  
Abdualziz El-Tamimi ◽  
Muneer Khan Mohammed ◽  
Shafiq Ahmad

This paper presents the results of an investigation on the capacity of wire electrical discharge machining (WEDM) to produce microchannels in the Nickel-based alloy, Monel 400. The main objective of the current study is to produce microchannels with desired/target geometry and acceptable surface quality. Square cross-sectional microchannels with dimensions of 500 × 500 µm were investigated. Experiments were conducted based on the one-factor-at-a-time approach for the key input WEDM process parameters, namely pulse-on time (TON), pulse-off time (TOFF), average gap voltage (VGAP), wire feed (WF), and dielectric flow rate (FR). Dimensional accuracy, machining speed, surface roughness, surface morphology, microhardness, and microstructure were analyzed to evaluate the microchannels. The minimum errors of 6% and 3% were observed in the width and depth of the microchannels, respectively. Furthermore, microchannels with enhanced surface integrity could be produced exhibiting smooth surface morphology and shallow recast layer (~0–2.55 µm).


Author(s):  
T Vijaya Babu ◽  
B Subbaratnam

WEDM (Wire Electrical discharge machining) is a nonconventional machining processes used in complicated shapes with high accuracy which are not possible with other conventional methods .Stainless steel 304 is used in present experimental work. Experiments are completed using Taguchi’s method with L9 orthogonal array .The aim of this work is to optimize the WEDM process parameters by considering input parameters are pulse on time , pulse off time ,peak current and wire feed and experiments are conducted with help of input parameters at three levels and response output parameters are MRR (Material removal Rate) and Surface Roughness (SR).Setting of parameters using by Taguchi’s method.


Author(s):  
D Kondayya ◽  
A Gopala Krishna

This paper presents an application of an integrated evolutionary approach for modelling and optimization of a wire electrical discharge machining (WEDM) process. The proposed methodology consists of two parts. In the first part, a novel application of genetic programming (GP) is proposed. GP is an evolutionary modelling algorithm which uses principles similar to genetic algorithms to model highly non-linear and complex processes, resulting in accurate and reliable models. Two important aspects of machining performance of WEDM, namely metal removal rate and surface roughness, are modelled based on experimental data using GP in terms of four prominent input variables. The effect of machining parameters on the performance measures is also reported. In the second part, as the chosen machining performances are opposite in nature, the problem under consideration is formulated as a multi-objective optimization problem and solved using an efficient evolutionary optimization algorithm, non-dominated sorting genetic algorithm-II (NSGA-II). The outcome of Pareto optimal solutions is presented. The work presents a fully fledged evolutionary approach for optimization of the process.


Sign in / Sign up

Export Citation Format

Share Document