scholarly journals Straw/Spring Teeth Interaction Analysis of Baler Picker in Smart Agriculture via an ADAMS-DEM Coupled Simulation Method

Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 296
Author(s):  
Qingqing Wang ◽  
Ziwen Bai ◽  
Zhiqiang Li ◽  
Dongbo Xie ◽  
Liqing Chen ◽  
...  

In this paper, a new coupling simulation method is proposed for baler picker using automatic dynamic analysis of mechanical systems (ADAMS) and discrete element method (DEM). Field tests are carried out to verify the accuracy of the simulation model. By using the coupling method, not only was it obtained that the forward velocity (FV) and the ground clearance of spring teeth (GCST) are positively correlated with the pick-up loss rate (PLR), but also that the blockage of the picker mainly occurs in the straw pushing area, and an optimization plan is proposed. Through the analysis of the acting force (AF) between the roller and the track groove, we speculate that the structure of the track groove in a certain area is defective. The coupling method and optimization scheme proposed in this paper can provide a reference for the optimal design of the picker.

Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Qingqing Wang ◽  
Qianwei Zhang ◽  
Yin Zhang ◽  
Guoan Zhou ◽  
Zhiqiang Li ◽  
...  

As a critical component of the sugarcane harvester, the primary function of the crop dividers is to lift the lodged sugarcane (LS) and reduce the loss rate of the sugarcane harvest. In this study, a rigid-flexible coupling simulation method is proposed to improve the lifting efficiency of the crop dividers on severely LS and analyze the nature of interaction between the sugarcane stalk and the crop dividers. The model’s accuracy was verified using field experiments, and the operational performance of the crop dividers on sugarcane in different lodging postures was investigated. The results showed that the curve of the vertical height of the center (VHC) fluctuated more and slipped with highest frequency during the lifting process of side and forward LS. The speed of VHC was fastest during the lifting operation of side LS. The effect of side angle on the lifting effect of sugarcane was significant; the qualified values of the VHC of sugarcane being lifted in different lodged postures were: side and reverse lodged > side lodged > side and forward lodged. The coupling method and experimental results described in this paper can provide guidance for the optimal design and field operation of the crop dividers.


2014 ◽  
Vol 577 ◽  
pp. 310-313
Author(s):  
Ping Yang ◽  
Zhou De Qu ◽  
Min Li

Based on the impact of some horizontal filtering tank’s instability in operation process on production, the present paper discusses the optimal design scheme for horizontal filtering tank structure with the help of finite element. Theoretical guidance will be given to enterprise from the perspective of finite element for the purpose of improving the horizontal filtering tank through constructing the finite element model for horizontal filtering tank with Creo parametric software, conducting simulation with workbench software[1] and finally arriving at the reasonable design scheme after analysis, thus avoiding the structural instability caused by the over-constraint of structural leg support beam and filter plate under-constraint.


2015 ◽  
Vol 2015.28 (0) ◽  
pp. _116-1_-_116-3_
Author(s):  
Kai Yamada ◽  
Yasunori Yusa ◽  
Tomonori Yamada ◽  
Shinobu Yoshimura

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Sukmaji Cahyono ◽  
Ari Prasetyo

Rotary tiller commonly used effectively to process the soil before planting in a terrain area. The design of the blade in rotary tiller was a significant factor in achieving soil breakup and more efficient inversion evenmore soil-fertilizer mixing. The blades design for an unmanned tiller with omnidirectional movement was required intensive research. A prototype unmanned tiller was manufactured, and it has four screw wheel blade that required optimal design and high accuracy movement for soil processing application.  In the present research, the design of the screw blade is investigated by mathematical and simulation method. The model was reverse engineering from commercial blades become screw-like blade wheel design. The calculation of the screw wheel design performance uses a mathematical approach identical to that of a screw conveyor and also it is supported by simulations to find the critical point of the structure and maximum defection in the screw wheel structure. Meanwhile, to study the lift-motion and moving of soil particles, simulations were carried out with variations in the depth of the screw blades on the ground surface, namely 20%, 40% and 50%. From the calculation result, the optimal rotational speed and power are found at the intersection point the percentage of soil depth and vortek efficiency, they are 350 rpm at 1.5 kW power.


2019 ◽  
Vol 123 (1266) ◽  
pp. 1275-1296
Author(s):  
A. A. Sheikh Al-Shabab ◽  
P. G. Tucker

ABSTRACTRANS models remain an attractive turbulence simulation method which could provide some open jet aerofoil interaction analysis at a fraction of the cost of a high-fidelity LES approach. The present work explores the potential and limitations of RANS in this context by simulating an open jet aerofoil noise experiment using the aerospace oriented Menter SST RANS model. This model’s tendency to transition at a critical Reynolds number lower than the experimental value was found to impact the boundary layer development. However, the introduction of a low-Re correction improved the prediction of surface pressure and skin friction, enabling the suction surface separation bubble to be captured. The free shear layer’s virtual origin characteristics exhibited sensitivity to the interaction with the aerofoil, which can be developed into a metric of the interaction. The main challenge for RANS was accounting for the rise in background disturbance level in the working section, which is caused by the high-turbulence intensity in the free shear layers.


Sign in / Sign up

Export Citation Format

Share Document