scholarly journals Pulse Magnetic Fields Induced Drug Release from Gold Coated Magnetic Nanoparticle Decorated Liposomes

2020 ◽  
Vol 6 (4) ◽  
pp. 52
Author(s):  
Basanta Acharya ◽  
Viktor Chikan

Magnetic nanoparticle-assisted drug release from liposomes is an important way to enhance the functionality/usefulness of liposomes. This work demonstrates an approach how to integrate magnetic nanoparticles with liposomes with the assistance of gold–thiol chemistry. The gold coated magnetic particles cover the thiolated liposomes from the outside, which removes the competition of the drug molecules and the triggering magnetic particles to free the inner space of the liposomes when compared to previous magneto liposome formulations. The liposome consists of dipalmitoyl phosphatidylcholine (DPPC) combined with distearoylphosphatidylcholine (DSPC) in addition to regular cholesterol or cholesterol-PEG-SH. Permeability assays and electron microscopy images show efficient coupling between the liposomes and nanoparticles in the presence of thiol groups without compromising the functionality of the liposomes. The nanoparticles such as gold nanoparticles, gold coated iron oxide nanoparticles and bare iron oxide nanoparticles are added following the model drug encapsulation. The efficient coupling between the gold coated nanoparticles (NPs) and the thiolate liposomes is evidenced by the shift in transition temperature of the thiolated liposomes. The addition of magnetically triggerable nanoparticles externally makes the entire interior of liposomes available for drug loading. The drug release efficiencies of these liposomes/NPs complexes were compared under exposure to pulsed magnetic fields. The results indicate up to 20% of the drug can be released in short time, which is comparable in efficiency to previous studies performed when magnetic NPs were located inside liposomes. Interestingly, the liposomes were found to exhibit variations in release efficiency based on different dilution media which is attributed to an osmotic pressure effect on liposomal stability.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 247
Author(s):  
Pavan Balabathula ◽  
Sarah Garland Whaley ◽  
Dileep R. Janagam ◽  
Nivesh K. Mittal ◽  
Bivash Mandal ◽  
...  

We formulated and tested a targeted nanodrug delivery system to help treat life-threatening invasive fungal infections, such as cryptococcal meningitis. Various designs of iron oxide nanoparticles (IONP) (34–40 nm) coated with bovine serum albumin and coated and targeted with amphotericin B (AMB-IONP), were formulated by applying a layer-by-layer approach. The nanoparticles were monodispersed and spherical in shape, and the lead formulation was found to be in an optimum range for nanomedicine with size (≤36 nm), zeta potential (−20 mV), and poly dispersity index (≤0.2), and the drug loading was 13.6 ± 6.9 µg of AMB/mg of IONP. The drug release profile indicated a burst release of up to 3 h, followed by a sustained drug release of up to 72 h. The lead showed a time-dependent cellular uptake in C. albicans and C. glabrata clinical isolates, and exhibited an improved efficacy (16–25-fold) over a marketed conventional AMB-deoxycholate product in susceptibility testing. Intracellular trafficking of AMB-IONP by TEM and confocal laser scanning microscopy confirmed the successful delivery of the AMB payload at and/or inside the fungal cells leading to potential therapeutic advantages over the AMB-deoxycholate product. A short-term stability study at 5 °C and 25 °C for up to two months showed that the lyophilized form was stable.


2021 ◽  
Vol 12 ◽  
pp. 1127-1139
Author(s):  
Karishma Berta Cotta ◽  
Sarika Mehra ◽  
Rajdip Bandyopadhyaya

Nanoparticle deployment in drug delivery is contingent upon controlled drug loading and a desired release profile, with simultaneous biocompatibility and cellular targeting. Iron oxide nanoparticles (IONPs), being biocompatible, are used as drug carriers. However, to prevent aggregation of bare IONPs, they are coated with stabilizing agents. We hypothesize that, zwitterionic drugs like norfloxacin (NOR, a fluoroquinolone) can manifest dual functionality – nanoparticle stabilization and antibiotic activity, eliminating the need of a separate stabilizing agent. Since these drugs have different charges, depending on the surrounding pH, drug loading enhancement could be pH dependent. Hence, upon synthesizing IONPs, they were coated with NOR, either at pH 5 (predominantly as cationic, NOR+) or at pH 10 (predominantly as anionic, NOR−). We observed that, drug loading at pH 5 exceeded that at pH 10 by 4.7–5.7 times. Furthermore, only the former (pH 5 system) exhibited a desirable slower drug release profile, compared to the free drug. NOR-coated IONPs also enable a 22 times higher drug accumulation in macrophages, compared to identical extracellular concentrations of the free drug. Thus, lowering the drug coating pH to 5 imparts multiple benefits – improved IONP stability, enhanced drug coating, higher drug uptake in macrophages at reduced toxicity and slower drug release.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Morteza Hasanzadeh Kafshgari ◽  
Delf Kah ◽  
Anca Mazare ◽  
Nhat Truong Nguyen ◽  
Monica Distaso ◽  
...  

Abstract Hollow titanium dioxide (TiO2) nanotubes offer substantially higher drug loading capacity and slower drug release kinetics compared to solid drug nanocarriers of comparable size. In this report, we load TiO2 nanotubes with iron oxide nanoparticles to facilitate site-specific magnetic guidance and drug delivery. We generate magnetic TiO2 nanotubes (TiO2NTs) by incorporating a ferrofluid containing Ø ≈ 10 nm iron oxide nanoparticles in planar sheets of weakly connected TiO2 nanotubes. After thermal annealing, the magnetic tubular arrays are loaded with therapeutic drugs and then sonicated to separate the nanotubes. We demonstrate that magnetic TiO2NTs are non-toxic for HeLa cells at therapeutic concentrations (≤200 µg/mL). Adhesion and endocytosis of magnetic nanotubes to a layer of HeLa cells are increased in the presence of a magnetic gradient field. As a proof-of-concept, we load the nanotubes with the topoisomerase inhibitor camptothecin and achieve a 90% killing efficiency. We also load the nanotubes with oligonucleotides for cell transfection and achieve 100% cellular uptake efficiency. Our results demonstrate the potential of magnetic TiO2NTs for a wide range of biomedical applications, including site-specific delivery of therapeutic drugs.


2012 ◽  
Vol 393 ◽  
pp. 328-333 ◽  
Author(s):  
Amelia J. Wagstaff ◽  
Sarah D. Brown ◽  
Megan R. Holden ◽  
Gemma E. Craig ◽  
Jane A. Plumb ◽  
...  

2017 ◽  
Vol 8 (3) ◽  
pp. 605-614 ◽  
Author(s):  
Lakshmeesha Upadhyaya ◽  
Mona Semsarilar ◽  
Rodrigo Fernández-Pacheco ◽  
Gema Martinez ◽  
Reyes Mallada ◽  
...  

Preparation of porous membranes from PMAA-b-PMMA copolymers and magnetic iron oxide nanoparticles and their performance under magnetic fields.


2007 ◽  
Vol 6 (4) ◽  
pp. 7290.2007.00025 ◽  
Author(s):  
Rita E. Serda ◽  
Natalie L. Adolphi ◽  
Marco Bisoffi ◽  
Laurel O. Sillerud

Antibody-conjugated iron oxide nanoparticles offer a specific and sensitive tool to enhance magnetic resonance (MR) images of both local and metastatic cancer. Prostate-specific membrane antigen (PSMA) is predominantly expressed on the neovasculature of solid tumors and on the surface of prostate cells, with enhanced expression following androgen deprivation therapy. Biotinylated anti-PSMA antibody was conjugated to streptavidin-labeled iron oxide nanoparticles and used in MR imaging and confocal laser scanning microscopic imaging studies using LNCaP prostate cancer cells. Labeled iron oxide nanoparticles are internalized by receptor-mediated endocytosis, which involves the formation of clathrin-coated vesicles. Endocytosed particles are not targeted to the Golgi apparatus for recycling but instead accumulate within lysosomes. In T1-weighted MR images, the signal enhancement owing to the magnetic particles was greater for cells with magnetic particles bound to the cell surface than for cells that internalized the particles. However, the location of the particles (surface vs internal) did not significantly alter their effect on T2-weighted images. Our findings indicate that targeting prostate cancer cells using PSMA offers a specific and sensitive technique for enhancing MR images.


Sign in / Sign up

Export Citation Format

Share Document