scholarly journals Quantitative NMR as a Versatile Tool for the Reference Material Preparation

2021 ◽  
Vol 7 (1) ◽  
pp. 15
Author(s):  
Kihwan Choi ◽  
Sangki Myoung ◽  
Yejin Seo ◽  
Sangdoo Ahn

The assessment of primary calibrator purity is critical for establishing traceability to the International System of Units (SI). Recently, quantitative nuclear magnetic resonance (qNMR) has been used as a purity determination method for reference material development, and many related measurement techniques have been designed to acquire accurate and reliable results. This review introduces the recent advances in these techniques (including multidimensional methods), focusing on the application of qNMR to reference material preparation.

2019 ◽  
Vol 411 (27) ◽  
pp. 7207-7220
Author(s):  
Philip J. H. Dunn ◽  
Dmitry Malinovsky ◽  
Eli Achtar ◽  
Cailean Clarkson ◽  
Heidi Goenaga-Infante

Abstract Determination of the purity of a substance traceable to the International System of Units (SI) is important for the production of reference materials affording traceability in quantitative measurements. Post-column isotope dilution using liquid chromatography-chemical oxidation-isotope ratio mass spectrometry (ID-LC-CO-IRMS) has previously been suggested as a means to determine the purity of organic compounds; however, the lack of an uncertainty budget has prevented assessment of the utility this approach until now. In this work, the previously published ID-LC-CO-IRMS methods have not only been improved by direct gravimetric determination of the mass flow of 13C-labelled spike but also a comprehensive uncertainty budget has been established. This enabled direct comparison of the well-characterised ID-LC-CO-IRMS method to quantitative nuclear magnetic resonance spectroscopy (qNMR) for purity determination using valine as the model compound. The ID-LC-CO-IRMS and qNMR methods provided results that were in agreement within the associated measurement uncertainty for the purity of a sample of valine of (97.1 ± 4.7)% and (99.64 ± 0.20)%, respectively (expanded uncertainties, k = 2). The magnitude of the measurement uncertainty for ID-LC-CO-IRMS determination of valine purity precludes the use of this method for determination of purity by direct analysis of the main component in the majority of situations; however, a mass balance approach is expected to result in significantly improved measurement uncertainty.


2021 ◽  
Vol 14 (3) ◽  
pp. 2317-2326
Author(s):  
Iris de Krom ◽  
Wijnand Bavius ◽  
Ruben Ziel ◽  
Elizabeth A. McGhee ◽  
Richard J. C. Brown ◽  
...  

Abstract. A primary mercury gas standard was developed at Van Swinden Laboratory (VSL) to establish an International System of Units (SI)-traceable reference point for mercury concentrations at emission and background levels in the atmosphere. The majority of mercury concentration measurements are currently made traceable to the empirically determined vapour pressure of mercury. The primary mercury gas standard can be used for the accurate and precise calibration of analytical systems used for measuring mercury concentrations in air. It has been especially developed to support measurements related to ambient air monitoring (1–2 ng m−3), indoor and workplace-related mercury concentration levels according to health standards (from 50 ng m−3 upwards) as well as stationary source emissions (from 1 µg m−3 upwards). The primary mercury gas standard is based on diffusion according to ISO 6154-8. Calibration gas mixtures are obtained by combining calibrated mass flows of nitrogen and air through a generator holding diffusion cells containing elemental mercury. In this paper, we present the results of comparisons between the primary gas standard and mercury calibration methods maintained by NPL (National Physical Laboratory in the United Kingdom), a National Metrology Institute (NMI), and the Jozef Stefan Institute (JSI), a Designated Institute (DI). The calibration methods currently used at NPL and JSI are based on the bell-jar calibration apparatus in combination with the Dumarey equation or a NIST (National Institute of Standards and Technology in the United States) reference material. For the comparisons, mercury was sampled on sorbent traps to obtain transfer standards with levels between 2 and 1000 ng with an expanded uncertainty not exceeding 3 % (k=2). The comparisons performed show that the results for the primary gas standard and the NIST reference material are comparable, whereas a difference of −8 % exists between results traceable to the primary gas standard and the Dumarey equation.


2020 ◽  
Vol 35 (2) ◽  
pp. 104-111
Author(s):  
John R. Sieber

As a producer of certified reference materials (CRMs), NIST faces high demand for Standard Reference Materials (SRMs). The demand is exacerbated by widespread misuse of CRMs. When should one use CRMs? When should one not use CRMs? Must labs always use NIST SRMs? How can labs demonstrate analytical capabilities for their accreditation scopes? Why so many questions? Standards developers, laboratory accreditors, and laboratory staff must be able to understand these topics with respect to quality systems in compliance with ISO/IEC 17025. They must calibrate and validate test methods and document traceability to the International System of Units (SI). Many people working in laboratory accreditation and under the umbrella of a quality system do not fully understand what these things are, let alone the language of chemical metrology. On average, they have little training in analytical chemistry, elemental analysis, and reference material development. It is hoped this paper will impress upon the reader the need for understanding how CRMs can be best used in the laboratory. This paper provides a brief background on the above problems and then looks at some of the support and reference information provided by NIST to metals and mining industries labs, commercial CRM producers, and accrediting bodies. The concepts and guidance apply broadly to chemical metrology and fundamental analytical chemistry. The paper includes examples (some from X-ray fluorescence spectrometry) to illustrate concepts.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 92
Author(s):  
Said Kounbach ◽  
Mokhtar Ben Embarek ◽  
Abdeljalil Chemaa ◽  
Rachid Boulif ◽  
Rachid Benhida ◽  
...  

Fluosilicic acid is a by-product of the chemical phosphate industry, mainly during the manufacture of phosphoric acid and triple super phosphate (TSP). To ensure the accurate measurement of the H2SiF6 mass fraction in this by-product, method validation is required, which needs a certified reference material (CRM) with its traceability to the International System of Units (SI). This work describes the development of a certified reference material of fluosilicic acid, which is commercially unavailable. Details of all steps, such as sample preparation, homogeneity and stability studies, value assignment, establishment of metrological traceability, and uncertainty estimation of the certified reference material, are fully described. The H2SiF6 mass fraction in the CRM was quantified by two analytical methods, i.e., UV-VIS as a primary method of analysis and flame mode atomic absorption spectroscopy (AAS) as a second method. It is worth noting that the results obtained from each method were in good agreement. The CRM certified value and corresponding expanded uncertainty, obtained from the combined standard uncertainty multiplied by the coverage factor (k = 2), for a confidence interval of 95%, was (91.5 ± 11.7) g·kg−1. The shelf life of the developed CRM is determined to be 1 year, provided that storage conditions are ensured. The developed CRM can be applied to validate analytical methods, improve the accuracy of measurement data as well as to establish the meteorological traceability of analytical results.


2020 ◽  
pp. 26-32
Author(s):  
M. I. Kalinin ◽  
L. K. Isaev ◽  
F. V. Bulygin

The situation that has developed in the International System of Units (SI) as a result of adopting the recommendation of the International Committee of Weights and Measures (CIPM) in 1980, which proposed to consider plane and solid angles as dimensionless derived quantities, is analyzed. It is shown that the basis for such a solution was a misunderstanding of the mathematical formula relating the arc length of a circle with its radius and corresponding central angle, as well as of the expansions of trigonometric functions in series. From the analysis presented in the article, it follows that a plane angle does not depend on any of the SI quantities and should be assigned to the base quantities, and its unit, the radian, should be added to the base SI units. A solid angle, in this case, turns out to be a derived quantity of a plane angle. Its unit, the steradian, is a coherent derived unit equal to the square radian.


2020 ◽  
Vol 87 (4) ◽  
pp. 258-265
Author(s):  
Luca Callegaro

AbstractThe revision of the International System of Units (SI), implemented since 20 May 2019, has redefined the unit of electric current, the ampere ( A), linking it to a fixed value of the elementary charge. This paper discusses the new definition and the realisation of the electrical units by quantum electrical metrology standards, which every year become more and more accessible, reliable and user friendly.


Sign in / Sign up

Export Citation Format

Share Document