scholarly journals Multi-Criteria Decision-Making Method Using Heronian Mean Operators under a Bipolar Neutrosophic Environment

Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 97 ◽  
Author(s):  
Changxing Fan ◽  
Jun Ye ◽  
Sheng Feng ◽  
En Fan ◽  
Keli Hu

In real applications, most decisions are fuzzy decisions, and the decision results mainly depend on the choice of aggregation operators. In order to aggregate information more scientifically and reasonably, the Heronian mean operator was studied in this paper. Considering the advantages and limitations of the Heronian mean (HM) operator, four Heronian mean operators for bipolar neutrosophic number (BNN) are proposed: the BNN generalized weighted HM (BNNGWHM) operator, the BNN improved generalized weighted HM (BNNIGWHM) operator, the BNN generalized weighted geometry HM (BNNGWGHM) operator, and the BNN improved generalized weighted geometry HM (BNNIGWGHM) operator. Then, their propositions were examined. Furthermore, two multi-criteria decision methods based on the proposed BNNIGWHM and BNNIGWGHM operator are introduced under a BNN environment. Lastly, the effectiveness of the new methods was verified with an example.

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Changxing Fan ◽  
Jun Ye

Many aggregation operators in multiattribute decisions assume that attributes are independent of each other; this leads to an unreasonable situation in information aggregation and decision-making. Heronian mean is the aggregation operator that can embody the interaction between attributes. In this paper, we merge the linguistic neutrosophic cubic number (LNCN) and the Heronian mean operator together to develop a LNCN generalized weighted Heronian mean (LNCNGWHM) operator and a LNCN three-parameter weighted Heronian mean (LNCNTPWHM) operator and then discuss their properties. Further, two multiattribute decision methods based on the proposed LNCNGWHM or LNCNTPWHM operator are introduced under LNCN environment. Finally, an example is used to indicate the effectiveness of the developed methods.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1189
Author(s):  
Chao Tian ◽  
Juan Juan Peng ◽  
Zhi Qiang Zhang ◽  
Mark Goh ◽  
Jian Qiang Wang

A multi-criteria decision-making (MCDM) method with single-valued neutrosophic information is developed based on the Partitioned Heronian Mean (PHM) operator and the Shapley fuzzy measure, which recognizes correlation among the selection criteria. Motivated by the PHM operator and Shapley fuzzy measure, two new aggregation operators, namely the single-valued neutrosophic PHM operator and the weighted single-valued neutrosophic Shapley PHM operator, are defined, and their corresponding properties and some special cases are investigated. An MCDM model is applied to solve the single-valued neutrosophic problem where weight information is not completely known. An example is provided to validate the proposed method.


2015 ◽  
Vol 23 (2) ◽  
pp. 296-315 ◽  
Author(s):  
Dejian YU

Among several extensions of fuzzy set theory, the concept introduced by Torra and Narukawa (2009) in defining hesitant fuzzy set is interesting and practical. In this paper we introduce and study new methods for dealing with MCDM (multi-criteria decision making) problems under the hesitant fuzzy environment. First, we propose and discuss the notion of hesitant fuzzy Heronian mean operators. By using these operators, we can portray the relationship of the criteria effectively. Then, the numerical examples are provided and comparative analyses with other aggregation operators are not neglected. Furthermore, the weighted forms of the hesitant fuzzy Heronian mean operators are defined for MCDM problem, based on which, new MCDM methods are proposed. The MCDM methods presented in this paper can provide an effective manner to assist the decision maker in making his/her decision. An example about dormitory construction projection selection is given to show the effectiveness of the proposed method.


2021 ◽  
pp. 1-23
Author(s):  
Peide Liu ◽  
Tahir Mahmood ◽  
Zeeshan Ali

Complex q-rung orthopair fuzzy set (CQROFS) is a proficient technique to describe awkward and complicated information by the truth and falsity grades with a condition that the sum of the q-powers of the real part and imaginary part is in unit interval. Further, Schweizer–Sklar (SS) operations are more flexible to aggregate the information, and the Muirhead mean (MM) operator can examine the interrelationships among the attributes, and it is more proficient and more generalized than many aggregation operators to cope with awkward and inconsistence information in realistic decision issues. The objectives of this manuscript are to explore the SS operators based on CQROFS and to study their score function, accuracy function, and their relationships. Further, based on these operators, some MM operators based on PFS, called complex q-rung orthopair fuzzy MM (CQROFMM) operator, complex q-rung orthopair fuzzy weighted MM (CQROFWMM) operator, and their special cases are presented. Additionally, the multi-criteria decision making (MCDM) approach is developed by using the explored operators based on CQROFS. Finally, the advantages and comparative analysis are also discussed.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1489
Author(s):  
Shahzad Faizi ◽  
Wojciech Sałabun ◽  
Nisbha Shaheen ◽  
Atiq ur Rehman ◽  
Jarosław Wątróbski

Ambiguous and uncertain facts can be handled using a hesitant 2-tuple linguistic set (H2TLS), an important expansion of the 2-tuple linguistic set. The vagueness and uncertainty of data can be grabbed by using aggregation operators. Therefore, aggregation operators play an important role in computational processes to merge the information provided by decision makers (DMs). Furthermore, the aggregation operator is a potential mechanism for merging multisource data which is synonymous with cooperative preference. The aggregation operators need to be studied and analyzed from various perspectives to represent complex choice situations more readily and capture the diverse experiences of DMs. In this manuscript, we propose some valuable operational laws for H2TLS. These new operational laws work through the individual aggregation of linguistic words and the collection of translation parameters. We introduced a hesitant 2-tuple linguistic weighted average (H2TLWA) operator to solve multi-criteria group decision-making (MCGDM) problems. We also define hesitant 2-tuple linguistic Bonferroni mean (H2TLBM) operator, hesitant 2-tuple linguistic geometric Bonferroni mean (H2TLGBM) operator, hesitant 2-tuple linguistic Heronian mean (H2TLHM) operator, and a hesitant 2-tuple linguistic geometric Heronian mean (H2TLGHM) operator based on the novel operational laws proposed in this paper. We define the aggregation operators for addition, subtraction, multiplication, division, scalar multiplication, power and complement with their respective properties. An application example and comparison analysis were examined to show the usefulness and practicality of the work.


Author(s):  
Faruk Karaaslan ◽  
Mohammed Allaw Dawood Dawood

AbstractComplex fuzzy (CF) sets (CFSs) have a significant role in modelling the problems involving two-dimensional information. Recently, the extensions of CFSs have gained the attention of researchers studying decision-making methods. The complex T-spherical fuzzy set (CTSFS) is an extension of the CFSs introduced in the last times. In this paper, we introduce the Dombi operations on CTSFSs. Based on Dombi operators, we define some aggregation operators, including complex T-spherical Dombi fuzzy weighted arithmetic averaging (CTSDFWAA) operator, complex T-spherical Dombi fuzzy weighted geometric averaging (CTSDFWGA) operator, complex T-spherical Dombi fuzzy ordered weighted arithmetic averaging (CTSDFOWAA) operator, complex T-spherical Dombi fuzzy ordered weighted geometric averaging (CTSDFOWGA) operator, and we obtain some of their properties. In addition, we develop a multi-criteria decision-making (MCDM) method under the CTSF environment and present an algorithm for the proposed method. To show the process of the proposed method, we present an example related to diagnosing the COVID-19. Besides this, we present a sensitivity analysis to reveal the advantages and restrictions of our method.


2021 ◽  
pp. 1-30
Author(s):  
Harish Garg ◽  
Zeeshan Ali ◽  
Zaoli Yang ◽  
Tahir Mahmood ◽  
Sultan Aljahdali

The paper aims to present a concept of a Complex interval-valued q-rung orthopair uncertain linguistic set (CIVQROULS) and investigated their properties. In the presented set, the membership grades are considered in terms of the interval numbers under the complex domain while the linguistic features are added to address the uncertainties in the data. To further discuss more, we have presented the operation laws and score function for CIVQROULS. In addition to them, we present some averaging and geometric operators to aggregate the different pairs of the CIVQROULS. Some fundamental properties of the proposed operators are stated. Afterward, an algorithm for solving the decision-making problems is addressed based on the proposed operator using the CIVQROULS features. The applicability of the algorithm is demonstrated through a case study related to brain tumors and their effectiveness is compared with the existing studies.


Author(s):  
Bhagawati Prasad Joshi ◽  
Abhay Kumar

The fusion of multidimensional intuitionistic fuzzy information plays an important part in decision making processes under an intuitionistic fuzzy environment. In this chapter, it is observed that existing intuitionistic fuzzy Einstein hybrid aggregation operators do not follow the idempotency and boundedness. This leads to sometimes illogical and even absurd results to the decision maker. Hence, some new intuitionistic fuzzy Einstein hybrid aggregation operators such as the new intuitionistic fuzzy Einstein hybrid weighted averaging (IFEHWA) and the new intuitionistic fuzzy Einstein hybrid weighted geometric (IFEHWG) were developed. The new IFEHWA and IFEHWG operators can weigh the arguments as well as their ordered positions the same as the intuitionistic fuzzy Einstein hybrid aggregation operators do. Further, it is validated that the defined operators are idempotent, bounded, monotonic and commutative. Then, based on the developed approach, a multi-criteria decision-making (MCDM) procedure is given. Finally, a numerical example is conducted to demonstrate the proposed method effectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Shenqing Jiang ◽  
Wei He ◽  
Fangfang Qin ◽  
Qingqing Cheng

In this paper, we focus on new methods to deal with multiple attribute group decision-making (MAGDM) problems and a new comparison law of interval-valued dual hesitant fuzzy elements (IVDHFEs). More explicitly, the interval-valued dual hesitant fuzzy 2nd-order central polymerization degree (IVDHFCP2) function is introduced, for the case that score values of different IVDHFEs are identical. This function can further compare different IVDHFEs. Then, we develop a series of interval-valued dual hesitant fuzzy power Heronian aggregation operators, i.e., the interval-valued dual hesitant fuzzy power Heronian mean (IVDHFPHM) operator, the interval-valued dual hesitant fuzzy power geometric Heronian mean (IVDHFPGHM) operator, and their weighted forms. Some desirable properties and their special cases are discussed. These proposed operators can simultaneously reflect the interrelationship of aggregated arguments and reduce the influence of unreasonable evaluation values. Finally, two approaches for interval-valued dual hesitant fuzzy MAGDM with known or unknown weight information are presented. An illustrative example and comparative studies are given to verify the advantages of our methods. A sensitivity analysis of the decision results is analyzed with different parameters.


Sign in / Sign up

Export Citation Format

Share Document