scholarly journals Combination of Ensembles of Regularized Regression Models with Resampling-Based Lasso Feature Selection in High Dimensional Data

Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 110 ◽  
Author(s):  
Abhijeet R Patil ◽  
Sangjin Kim

In high-dimensional data, the performances of various classifiers are largely dependent on the selection of important features. Most of the individual classifiers with the existing feature selection (FS) methods do not perform well for highly correlated data. Obtaining important features using the FS method and selecting the best performing classifier is a challenging task in high throughput data. In this article, we propose a combination of resampling-based least absolute shrinkage and selection operator (LASSO) feature selection (RLFS) and ensembles of regularized regression (ERRM) capable of dealing data with the high correlation structures. The ERRM boosts the prediction accuracy with the top-ranked features obtained from RLFS. The RLFS utilizes the lasso penalty with sure independence screening (SIS) condition to select the top k ranked features. The ERRM includes five individual penalty based classifiers: LASSO, adaptive LASSO (ALASSO), elastic net (ENET), smoothly clipped absolute deviations (SCAD), and minimax concave penalty (MCP). It was built on the idea of bagging and rank aggregation. Upon performing simulation studies and applying to smokers’ cancer gene expression data, we demonstrated that the proposed combination of ERRM with RLFS achieved superior performance of accuracy and geometric mean.

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246159
Author(s):  
Rahi Jain ◽  
Wei Xu

Feature selection on high dimensional data along with the interaction effects is a critical challenge for classical statistical learning techniques. Existing feature selection algorithms such as random LASSO leverages LASSO capability to handle high dimensional data. However, the technique has two main limitations, namely the inability to consider interaction terms and the lack of a statistical test for determining the significance of selected features. This study proposes a High Dimensional Selection with Interactions (HDSI) algorithm, a new feature selection method, which can handle high-dimensional data, incorporate interaction terms, provide the statistical inferences of selected features and leverage the capability of existing classical statistical techniques. The method allows the application of any statistical technique like LASSO and subset selection on multiple bootstrapped samples; each contains randomly selected features. Each bootstrap data incorporates interaction terms for the randomly sampled features. The selected features from each model are pooled and their statistical significance is determined. The selected statistically significant features are used as the final output of the approach, whose final coefficients are estimated using appropriate statistical techniques. The performance of HDSI is evaluated using both simulated data and real studies. In general, HDSI outperforms the commonly used algorithms such as LASSO, subset selection, adaptive LASSO, random LASSO and group LASSO.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 613
Author(s):  
Yu Zhou ◽  
Junhao Kang ◽  
Xiao Zhang

Recent discretization-based feature selection methods show great advantages by introducing the entropy-based cut-points for features to integrate discretization and feature selection into one stage for high-dimensional data. However, current methods usually consider the individual features independently, ignoring the interaction between features with cut-points and those without cut-points, which results in information loss. In this paper, we propose a cooperative coevolutionary algorithm based on the genetic algorithm (GA) and particle swarm optimization (PSO), which searches for the feature subsets with and without entropy-based cut-points simultaneously. For the features with cut-points, a ranking mechanism is used to control the probability of mutation and crossover in GA. In addition, a binary-coded PSO is applied to update the indices of the selected features without cut-points. Experimental results on 10 real datasets verify the effectiveness of our algorithm in classification accuracy compared with several state-of-the-art competitors.


2015 ◽  
Vol 26 (4) ◽  
pp. 783-796 ◽  
Author(s):  
Émeline Perthame ◽  
Chloé Friguet ◽  
David Causeur

2021 ◽  
Vol 26 (1) ◽  
pp. 67-77
Author(s):  
Siva Sankari Subbiah ◽  
Jayakumar Chinnappan

Now a day, all the organizations collecting huge volume of data without knowing its usefulness. The fast development of Internet helps the organizations to capture data in many different formats through Internet of Things (IoT), social media and from other disparate sources. The dimension of the dataset increases day by day at an extraordinary rate resulting in large scale dataset with high dimensionality. The present paper reviews the opportunities and challenges of feature selection for processing the high dimensional data with reduced complexity and improved accuracy. In the modern big data world the feature selection has a significance in reducing the dimensionality and overfitting of the learning process. Many feature selection methods have been proposed by researchers for obtaining more relevant features especially from the big datasets that helps to provide accurate learning results without degradation in performance. This paper discusses the importance of feature selection, basic feature selection approaches, centralized and distributed big data processing using Hadoop and Spark, challenges of feature selection and provides the summary of the related research work done by various researchers. As a result, the big data analysis with the feature selection improves the accuracy of the learning.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Zhang ◽  
Guang Lu ◽  
Jiaquan Li ◽  
Chuanwen Li

Mining useful knowledge from high-dimensional data is a hot research topic. Efficient and effective sample classification and feature selection are challenging tasks due to high dimensionality and small sample size of microarray data. Feature selection is necessary in the process of constructing the model to reduce time and space consumption. Therefore, a feature selection model based on prior knowledge and rough set is proposed. Pathway knowledge is used to select feature subsets, and rough set based on intersection neighborhood is then used to select important feature in each subset, since it can select features without redundancy and deals with numerical features directly. In order to improve the diversity among base classifiers and the efficiency of classification, it is necessary to select part of base classifiers. Classifiers are grouped into several clusters by k-means clustering using the proposed combination distance of Kappa-based diversity and accuracy. The base classifier with the best classification performance in each cluster will be selected to generate the final ensemble model. Experimental results on three Arabidopsis thaliana stress response datasets showed that the proposed method achieved better classification performance than existing ensemble models.


Sign in / Sign up

Export Citation Format

Share Document