scholarly journals Numerical Solution of Stieltjes Differential Equations

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1571
Author(s):  
Francisco J. Fernández ◽  
F. Adrián F. Tojo

This work is devoted to the obtaining of a new numerical scheme based on quadrature formulae for the Lebesgue–Stieltjes integral for the approximation of Stieltjes ordinary differential equations. This novel method allows us to numerically approximate models based on Stieltjes ordinary differential equations for which no explicit solution is known. We prove several theoretical results related to the consistency, convergence, and stability of the numerical method. We also obtain the explicit solution of the Stieltjes linear ordinary differential equation and use it to validate the numerical method. Finally, we present some numerical results that we have obtained for a realistic population model based on a Stieltjes differential equation and a system of Stieltjes differential equations with several derivators.

Author(s):  
Nelson Onuchic ◽  
Plácido Z. Táboas

SynopsisThe perturbed linear ordinary differential equationis considered. Adopting the same approach of Massera and Schäffer [6], Corduneanu states in [2] the existence of a set of solutions of (1) contained in a given Banach space. In this paper we investigate some topological aspects of the set and analyze some of the implications from a point of view ofstability theory.


2014 ◽  
Vol 687-691 ◽  
pp. 601-605
Author(s):  
Ting Gang Zhao ◽  
Zi Lang Zhan ◽  
Jin Xia Huo ◽  
Zi Guang Yang

In this paper, we propose an efficient numerical method for ordinary differential equation with fractional order, based on Legendre-Gauss-Radau interpolation, which is easy to be implemented and possesses the spectral accuracy. We apply the proposed method to multi-order fractional ordinary differential equation. Numerical results demonstrate the effectiveness of the approach.


Author(s):  
Ch. G. Philos

AbstractThe purpose of this paper is to establish comparison criteria, by which the oscillatory and asymptotic behavior of linear retarded differential equations of arbitrary order is inherited from the oscillation of an associated second order linear ordinary differential equation. These criteria are new even in the case of ordinary differential equations.


Author(s):  
Jingna Zhang ◽  
Haobo Gong ◽  
Sadia Arshad ◽  
Jianfei Huang

In this paper, we present a superlinear numerical method for multi-term fractional nonlinear ordinary differential equations (MTFNODEs). First, the presented problem is equivalently transformed into its integral form with multi-term Riemann–Liouville integrals. Second, the compound product trapezoidal rule is used to approximate the fractional integrals. Then, the unconditional stability and convergence with the order [Formula: see text] of the proposed scheme are strictly established, where [Formula: see text] and [Formula: see text] are the maximum and the second maximum fractional indexes in the considered MTFNODEs, respectively. Finally, two numerical examples are provided to support the theoretical results.


2014 ◽  
Vol 58 (1) ◽  
pp. 183-197 ◽  
Author(s):  
John R. Graef ◽  
Johnny Henderson ◽  
Rodrica Luca ◽  
Yu Tian

AbstractFor the third-order differential equationy′″ = ƒ(t, y, y′, y″), where, questions involving ‘uniqueness implies uniqueness’, ‘uniqueness implies existence’ and ‘optimal length subintervals of (a, b) on which solutions are unique’ are studied for a class of two-point boundary-value problems.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 174
Author(s):  
Janez Urevc ◽  
Miroslav Halilovič

In this paper, a new class of Runge–Kutta-type collocation methods for the numerical integration of ordinary differential equations (ODEs) is presented. Its derivation is based on the integral form of the differential equation. The approach enables enhancing the accuracy of the established collocation Runge–Kutta methods while retaining the same number of stages. We demonstrate that, with the proposed approach, the Gauss–Legendre and Lobatto IIIA methods can be derived and that their accuracy can be improved for the same number of method coefficients. We expressed the methods in the form of tables similar to Butcher tableaus. The performance of the new methods is investigated on some well-known stiff, oscillatory, and nonlinear ODEs from the literature.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
P. G. L. Leach ◽  
K. S. Govinder ◽  
K. Andriopoulos

Hidden symmetries entered the literature in the late Eighties when it was observed that there could be gain of Lie point symmetry in the reduction of order of an ordinary differential equation. Subsequently the reverse process was also observed. Such symmetries were termed “hidden”. In each case the source of the “new” symmetry was a contact symmetry or a nonlocal symmetry, that is, a symmetry with one or more of the coefficient functions containing an integral. Recent work by Abraham-Shrauner and Govinder (2006) on the reduction of partial differential equations demonstrates that it is possible for these “hidden” symmetries to have a point origin. In this paper we show that the same phenomenon can be observed in the reduction of ordinary differential equations and in a sense loosen the interpretation of hidden symmetries.


2021 ◽  
Vol 41 (5) ◽  
pp. 685-699
Author(s):  
Ivan Tsyfra

We study the relationship between the solutions of stationary integrable partial and ordinary differential equations and coefficients of the second-order ordinary differential equations invariant with respect to one-parameter Lie group. The classical symmetry method is applied. We prove that if the coefficients of ordinary differential equation satisfy the stationary integrable partial differential equation with two independent variables then the ordinary differential equation is integrable by quadratures. If special solutions of integrable partial differential equations are chosen then the coefficients satisfy the stationary KdV equations. It was shown that the Ermakov equation belong to a class of these equations. In the framework of the approach we obtained the similar results for generalized Riccati equations. By using operator of invariant differentiation we describe a class of higher order ordinary differential equations for which the group-theoretical method enables us to reduce the order of ordinary differential equation.


Sign in / Sign up

Export Citation Format

Share Document