scholarly journals Meshless Analysis of Nonlocal Boundary Value Problems in Anisotropic and Inhomogeneous Media

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2045
Author(s):  
Zaheer-ud-Din ◽  
Muhammad Ahsan ◽  
Masood Ahmad ◽  
Wajid Khan ◽  
Emad E. Mahmoud ◽  
...  

In this work, meshless methods based on a radial basis function (RBF) are applied for the solution of two-dimensional steady-state heat conduction problems with nonlocal multi-point boundary conditions (NMBC). These meshless procedures are based on the multiquadric (MQ) RBF and its modified version (i.e., integrated MQ RBF). The meshless method is extended to the NMBC and compared with the standard collocation method (i.e., Kansa’s method). In extended methods, the interior and the boundary solutions are approximated with a sum of RBF series, while in Kansa’s method, a single series of RBF is considered. Three different sorts of solution domains are considered in which Dirichlet or Neumann boundary conditions are specified on some part of the boundary while the unknown function values of the remaining portion of the boundary are related to a discrete set of interior points. The influences of NMBC on the accuracy and condition number of the system matrix associated with the proposed methods are investigated. The sensitivity of the shape parameter is also analyzed in the proposed methods. The performance of the proposed approaches in terms of accuracy and efficiency is confirmed on the benchmark problems.

Author(s):  
Zaheer-ud-Din Muhammad ◽  
Muhammad Ahsan ◽  
Masood Ahmad ◽  
Wajid Khan ◽  
Emad E. Mahmoud ◽  
...  

In this work, meshless methods are applied for the solution of two-dimensional steady-state heat conduction problems with nonlocal multi-point boundary conditions (NMBC). These meshless procedures are based on multiquadric radial basis function (MQ RBF) and its modified version (i.e. integrated MQ RBF). The proposed meshless methods which were recently published in \cite{Reutskiy2016} is compared with standard collocation method (i.e. Kansa's method). Three different sorts of solution domain are considered in which Dirichlet boundary condition is specified on some part of the boundary and is related to the unknown function values at a discrete set of interior points. The influence of NMBC on the accuracy and condition number of the system matrix associated to the proposed methods is investigated. The sensitivity of the shape parameter is also analyzed in the proposed methods. Performance of the proposed approaches in terms of accuracy and efficiency is confirmed on the benchmark problems.


Author(s):  
Ozgur Yildirim

In this paper, third and fourth order of accuracy stable difference schemes for approximately solving multipoint nonlocal boundary value problems for hyperbolic equations with the Neumann boundary conditions are considered. Stability estimates for the solutions of these difference schemes are presented. Finite difference method is used to obtain numerical solutions. Numerical results of errors and CPU times are presented and are analyzed.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
M. D. Mhlongo ◽  
R. J. Moitsheki

One-dimensional steady-state heat transfer in fins of different profiles is studied. The problem considered satisfies the Dirichlet boundary conditions at one end and the Neumann boundary conditions at the other. The thermal conductivity and heat coefficients are assumed to be temperature dependent, which makes the resulting differential equation highly nonlinear. Classical Lie point symmetry methods are employed, and some reductions are performed. Some invariant solutions are constructed. The effects of thermogeometric fin parameter, the exponent on temperature, and the fin efficiency are studied.


2007 ◽  
Vol 17 (01) ◽  
pp. 1-32 ◽  
Author(s):  
ENRICO BERTOLAZZI ◽  
GIANMARCO MANZINI

The accuracy of the diamond scheme is experimentally investigated for anisotropic diffusion problems in two space dimensions. This finite volume formulation is cell-centered on unstructured triangulations and the numerical method approximates the cell averages of the solution by a suitable discretization of the flux balance at cell boundaries. The key ingredient that allows the method to achieve second-order accuracy is the reconstruction of vertex values from cell averages. For this purpose, we review several techniques from the literature and propose a new variant of the reconstruction algorithm that is based on linear Least Squares. Our formulation unifies the treatment of internal and boundary vertices and includes information from boundaries as linear constraints of the Least Squares minimization process. It turns out that this formulation is well-posed on those unstructured triangulations that satisfy a general regularity condition. The performance of the finite volume method with different algorithms for vertex reconstructions is examined on three benchmark problems having full Dirichlet, Dirichlet-Robin and Dirichlet–Neumann boundary conditions. Comparison of experimental results shows that an important improvement of the accuracy of the numerical solution is attained by using our Least Squares-based formulation. In particular, in the case of Dirichlet–Neumann boundary conditions and strongly anisotropic diffusions the good behavior of the method relies on the absence of locking phenomena that appear when other reconstruction techniques are used.


2006 ◽  
Vol 11 (1) ◽  
pp. 47-78 ◽  
Author(s):  
S. Pečiulytė ◽  
A. Štikonas

The Sturm-Liouville problem with various types of two-point boundary conditions is considered in this paper. In the first part of the paper, we investigate the Sturm-Liouville problem in three cases of nonlocal two-point boundary conditions. We prove general properties of the eigenfunctions and eigenvalues for such a problem in the complex case. In the second part, we investigate the case of real eigenvalues. It is analyzed how the spectrum of these problems depends on the boundary condition parameters. Qualitative behavior of all eigenvalues subject to the nonlocal boundary condition parameters is described.


Author(s):  
Shakirbai G. Kasimov ◽  
◽  
Mahkambek M. Babaev ◽  
◽  

The paper studies a problem with initial functions and boundary conditions for partial differential partial equations of fractional order in partial derivatives with a delayed time argument, with degree Laplace operators with spatial variables and nonlocal boundary conditions in Sobolev classes. The solution of the initial boundary-value problem is constructed as the series’ sum in the eigenfunction system of the multidimensional spectral problem. The eigenvalues are found for the spectral problem and the corresponding system of eigenfunctions is constructed. It is shown that the system of eigenfunctions is complete and forms a Riesz basis in the Sobolev subspace. Based on the completeness of the eigenfunctions system the uniqueness theorem for solving the problem is proved. In the Sobolev subspaces the existence of a regular solution to the stated initial-boundary problem is proved.


2018 ◽  
Vol 13 (3) ◽  
pp. 1-10 ◽  
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh Nasibullaeva ◽  
O.V. Darintsev

The flow of a liquid through a tube deformed by a piezoelectric cell under a harmonic law is studied in this paper. Linear deformations are compared for the Dirichlet and Neumann boundary conditions on the contact surface of the tube and piezoelectric element. The flow of fluid through a deformed channel for two flow regimes is investigated: in a tube with one closed end due to deformation of the tube; for a tube with two open ends due to deformation of the tube and the differential pressure applied to the channel. The flow rate of the liquid is calculated as a function of the frequency of the deformations, the pressure drop and the physical parameters of the liquid.


Sign in / Sign up

Export Citation Format

Share Document