scholarly journals Statistical and Type II Error Assessment of a Runoff Predictive Model in Peninsula Malaysia

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 812
Author(s):  
Lloyd Ling ◽  
Zulkifli Yusop ◽  
Joan Lucille Ling

Flood related disasters continue to threaten mankind despite preventative efforts in technological advancement. Since 1954, the Soil Conservation Services (SCS) Curve Number (CN0.2) rainfall-runoff model has been widely used but reportedly produced inconsistent results in field studies worldwide. As such, this article presents methodology to reassess the validity of the model and perform model calibration with inferential statistics. A closed form equation was solved to narrow previous research gap with a derived 3D runoff difference model for type II error assessment. Under this study, the SCS runoff model is statistically insignificant (alpha = 0.01) without calibration. Curve Number CN0.2 = 72.58 for Peninsula Malaysia with a 99% confidence interval range of 67 to 76. Within these CN0.2 areas, SCS model underpredicts runoff amounts when the rainfall depth of a storm is < 70 mm. Its overprediction tendency worsens in cases involving larger storm events. For areas of 1 km2, it underpredicted runoff amount the most (2.4 million liters) at CN0.2 = 67 and the rainfall depth of 55 mm while it nearly overpredicted runoff amount by 25 million liters when the storm depth reached 430 mm in Peninsula Malaysia. The SCS model must be validated with rainfall-runoff datasets prior to its adoption for runoff prediction in any part of the world. SCS practitioners are encouraged to adopt the general formulae from this article to derive assessment models and equations for their studies.

RBRH ◽  
2019 ◽  
Vol 24 ◽  
Author(s):  
Luiz Claudio Galvão do Valle Junior ◽  
Dulce Buchala Bicca Rodrigues ◽  
Paulo Tarso Sanches de Oliveira

ABSTRACT The Curve Number (CN) method is extensively used for predict surface runoff from storm events. However, remain some uncertainties in the method, such as in the use of an initial abstraction (λ) standard value of 0.2 and on the choice of the most suitable CN values. Here, we compute λ and CN values using rainfall and runoff data to a rural basin located in Midwestern Brazil. We used 30 observed rainfall-runoff events with rainfall depth greater than 25 mm to derive associated CN values using five statistical methods. We noted λ values ranging from 0.005 to 0.455, with a median of 0.045, suggesting the use of λ = 0.05 instead of 0.2. We found a S0.2 to S0.05 conversion factor of 2.865. We also found negative values of Nash-Sutcliffe Efficiency (to the estimated and observed runoff). Therefore, our findings indicated that the CN method was not suitable to estimate runoff in the studied basin. This poor performance suggests that the runoff mechanisms in the studied area are dominated by subsurface stormflow.


2014 ◽  
Vol 16 (1) ◽  
pp. 188-203 ◽  

<div> <h1 style="text-align: justify;"><span style="font-size:11px;"><span style="font-family:arial,helvetica,sans-serif;">In this paper, the application of a continuous rainfall-runoff model to the basin of Kosynthos River (district of Xanthi, Thrace, northeastern Greece), as well as the comparison of the computational runoff results with field discharge measurements are presented. The rainfall losses are estimated by the widely known Soil Conservation Service-Curve Number model, while the transformation of rainfall excess into direct runoff hydrograph is made by using the dimensionless unit hydrograph of Soil Conservation Service. The baseflow is computed by applying an exponential recession model. The routing of the total runoff hydrograph from the outlet of a sub-basin to the outlet of the whole basin is achieved by the Muskingum-Cunge model. The application of this complex hydrologic model was elaborated with the HEC-HMS 3.5 Hydrologic Modeling System of the U.S. Army Corps of Engineers. The results of the comparison between computed and measured discharge values are very satisfactory.</span></span></h1> </div> <p>&nbsp;</p>


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 415 ◽  
Author(s):  
Adam Krajewski ◽  
Anna E. Sikorska-Senoner ◽  
Agnieszka Hejduk ◽  
Leszek Hejduk

The Curve Number method is one of the most commonly applied methods to describe the relationship between the direct runoff and storm rainfall depth. Due to its popularity and simplicity, it has been studied extensively. Less attention has been given to the dimensionless initial abstraction ratio, which is crucial for an accurate direct runoff estimation with the Curve Number. This ratio is most often assumed to be equal to 0.20, which was originally proposed by the method’s developers. In this work, storm events recorded in the years 2009–2017 in two small Polish catchments of different land use types (urban and agroforested) were analyzed for variability in the initial abstraction ratio across events, seasons, and land use type. Our results showed that: (i) estimated initial abstraction ratios varied between storm events and seasons, and were most often lower than the original value of 0.20; (ii) for large events, the initial abstraction ratio in the catchment approaches a constant value after the rainfall depth exceeds a certain threshold value. Thus, when using the Soil Conservation Service-Curve Number (SCS-CN) method, the initial abstraction ratio should be locally verified, and the conditions for the application of the suggested value of 0.20 should be established.


Author(s):  
L. Hejduk ◽  
A. Hejduk ◽  
K. Banasik

Abstract. One of the widely used methods for predicting flood runoff depth from ungauged catchments is the curve number (CN) method, developed by Soil Conservation Service (SCS) of US Department of Agriculture. The CN parameter can be computed directly from recorded rainfall depths and direct runoff volumes in case of existing data. In presented investigations, the CN parameter has been computed for snowmelt-runoff events based on snowmelt and rainfall measurements. All required data has been gathered for a small agricultural catchment (A = 23.4 km2) of Zagożdżonka river, located in Central Poland. The CN number received from 28 snowmelt-runoff events has been compared with CN computed from rainfall-runoff events for the same catchment. The CN parameter, estimated empirically varies from 64.0 to 94.8. The relation between CN and snowmelt depth was investigated in a similar procedure to relation between CN and rainfall depth.


2021 ◽  
Author(s):  
Harry R. Manson

The impact of uncertainty in spatial and a-spatial lumped model parameters for a continuous rainfall-runoff model is evaluated with respect to model prediction. The model uses a modified SCS-Curve Number approach that is loosely coupled with a geographic information system (GIS). The rainfall-runoff model uses daily average inputs and is calibrated using a daily average streamflow record for the study site. A Monte Carlo analysis is used to identify total model uncertainty while sensitivity analysis is applied using both a one-at-a-time (OAT) approach as well as through application of the extended Fourier Amplitude Sensitivity Technique (FAST). Conclusions suggest that the model is highly followed by model inputs and finally the Curve Number. While the model does not indicate a high degree of sensitivity to the Curve Number at present conditions, uncertainties in Curve Number estimation can potentially be the cause of high predictive errors when future development scenarios are evaluated.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 175
Author(s):  
Lloyd Ling ◽  
Sai Hin Lai ◽  
Zulkifli Yusop ◽  
Ren Jie Chin ◽  
Joan Lucille Ling

The curve number (CN) rainfall–runoff model is widely adopted. However, it had been reported to repeatedly fail in consistently predicting runoff results worldwide. Unlike the existing antecedent moisture condition concept, this study preserved its parsimonious model structure for calibration according to different ground saturation conditions under guidance from inferential statistics. The existing CN model was not statistically significant without calibration. The calibrated model did not rely on the return period data and included rainfall depths less than 25.4 mm to formulate statistically significant urban runoff predictive models, and it derived CN directly. Contrarily, the linear regression runoff model and the asymptotic fitting method failed to model hydrological conditions when runoff coefficient was greater than 50%. Although the land-use and land cover remained the same throughout this study, the calculated CN value of this urban watershed increased from 93.35 to 96.50 as the watershed became more saturated. On average, a 3.4% increase in CN value would affect runoff by 44% (178,000 m3). This proves that the CN value cannot be selected according to the land-use and land cover of the watershed only. Urban flash flood modelling should be formulated with rainfall–runoff data pairs with a runoff coefficient > 50%.


2014 ◽  
Vol 14 (7) ◽  
pp. 1819-1833 ◽  
Author(s):  
A. Candela ◽  
G. Brigandì ◽  
G. T. Aronica

Abstract. In this paper a procedure to derive synthetic flood design hydrographs (SFDH) using a bivariate representation of rainfall forcing (rainfall duration and intensity) via copulas, which describes and models the correlation between two variables independently of the marginal laws involved, coupled with a distributed rainfall–runoff model, is presented. Rainfall–runoff modelling (R–R modelling) for estimating the hydrological response at the outlet of a catchment was performed by using a conceptual fully distributed procedure based on the Soil Conservation Service – Curve Number method as an excess rainfall model and on a distributed unit hydrograph with climatic dependencies for the flow routing. Travel time computation, based on the distributed unit hydrograph definition, was performed by implementing a procedure based on flow paths, determined from a digital elevation model (DEM) and roughness parameters obtained from distributed geographical information. In order to estimate the primary return period of the SFDH, which provides the probability of occurrence of a hydrograph flood, peaks and flow volumes obtained through R–R modelling were treated statistically using copulas. Finally, the shapes of hydrographs have been generated on the basis of historically significant flood events, via cluster analysis. An application of the procedure described above has been carried out and results presented for the case study of the Imera catchment in Sicily, Italy.


2016 ◽  
Vol 78 (9-4) ◽  
Author(s):  
Fahad Alahmadi ◽  
Norhan Abd Rahman ◽  
Zulkifli Yusop

Hydrological modelling of ungauged catchments is still a challenging task especially in arid regions with a unique land cover features such as highly fracture volcanic basalt rocks. In this study, upper Bathan catchment (103 km2) in Madinah, western of Saudi Arabia is selected. The aim of this paper is to simulate the hydrological responses of volcanic catchment to daily design storm events. The weighted areal average of two daily design rainfall depth scenarios are computed, which are 50 years and 100 years return period and correspondent predicted rainfall are 80.6 mm and 94.1 mm, respectively. SCS Type II temporal synthetic distribution of daily rainfall is selected to disaggregate the daily rainfall into smaller time interval. Excess rainfall is computed using Soil Conservation Services Curve Number (SCS-CN) method based on Land Cover and Land Use (LCLU) and hydrological soil groups (HSG) maps, while direct runoff hydrograph is developed using Soil Conservation Services dimensionless unit hydrograph (SCS-UH) method using lag time equation. HEC-HMS software is used, and it showed that the runoff volumes of the two rainfall scenarios are 50% and 54% of the total rainfall depth, and the peak discharges are 123 m3/sec and 158 m3/sec. This study provided an indication of the hydrograph characteristics of basaltic catchments and the result of this paper can be used for further flood studies in arid ungauged volcanic catchments.  


2021 ◽  
Author(s):  
Harry R. Manson

The impact of uncertainty in spatial and a-spatial lumped model parameters for a continuous rainfall-runoff model is evaluated with respect to model prediction. The model uses a modified SCS-Curve Number approach that is loosely coupled with a geographic information system (GIS). The rainfall-runoff model uses daily average inputs and is calibrated using a daily average streamflow record for the study site. A Monte Carlo analysis is used to identify total model uncertainty while sensitivity analysis is applied using both a one-at-a-time (OAT) approach as well as through application of the extended Fourier Amplitude Sensitivity Technique (FAST). Conclusions suggest that the model is highly followed by model inputs and finally the Curve Number. While the model does not indicate a high degree of sensitivity to the Curve Number at present conditions, uncertainties in Curve Number estimation can potentially be the cause of high predictive errors when future development scenarios are evaluated.


Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 82
Author(s):  
Etienne Umukiza ◽  
James M. Raude ◽  
Simon M. Wandera ◽  
Andrea Petroselli ◽  
John M. Gathenya

Due to population growth and an expanding economy, land use/land cover (LULC) change is continuously intensifying and its effects on floods in Kakia and Esamburmbur sub-catchments in Narok town, Kenya, are increasing. This study was carried out in order to evaluate the influence of LULC changes on peak discharge and flow volume in the aforementioned areas. The Event-Based Approach for Small and Ungauged Basins (EBA4SUB) rainfall–runoff model was used to evaluate the peak discharge and flow volume under different assumed scenarios of LULC that were projected starting from a diachronic analysis of satellite images of 1985 and 2019. EBA4SUB simulation demonstrated how the configuration and composition of LULC affect peak discharge and flow volume in the selected catchments. The results showed that the peak discharge and flow volume are affected by the variation of the Curve Number (CN) value that is dependent on the assumed LULC scenario. The evaluated peak discharge and flow volume for the assumed LULC scenarios can be used by local Municipal bodies to mitigate floods.


Sign in / Sign up

Export Citation Format

Share Document