scholarly journals Magnetic Field Effect on Sisko Fluid Flow Containing Gold Nanoparticles through a Porous Curved Surface in the Presence of Radiation and Partial Slip

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 921
Author(s):  
Umair Khan ◽  
Aurang Zaib ◽  
Anuar Ishak

The radiation and magnetic field effects of nanofluids play a significant role in biomedical engineering and medical treatment. This study investigated the performance of gold particles in blood flow (Sisko fluid flow) over a porous, slippery, curved surface. The partial slip effect was considered to examine the characteristics of nanofluid flow in depth. The foremost partial differential equations of the Sisko model were reduced to ordinary differential equations by using suitable variables, and the boundary value problem of the fourth-order (bvp4c) procedure was applied to plot the results. In addition, the effects of the parameters involved on temperature and velocity were presented in light of the parametric investigation. A comparison with published results showed excellent agreement. The velocity distribution was enhanced due to the magnetic field, while the temperature increased due to the effects of a magnetic field and radiation, which are effective in therapeutic hyperthermia. In addition, the nanoparticle suspension showed increased temperature and decelerated velocity.

Author(s):  
Gülen Dilara Günalp ◽  
Cemal Baykara ◽  
Uğur Güven

In this study, the longitudinal wave characteristics of magnetic field sensitive viscoelastic rods under the transverse magnetic field effect is addressed by including lateral inertia effect. The analysis is based on the Love rod theory. The polymeric rod is modeled as standard linear solid viscoelastic material. The obtained explicit solution is illustrated graphically. The comparative results of the analysis show that the transverse magnetic field has a remarkable effect on the wave phase velocity and attenuation coefficient. The transverse magnetic field especially leads to a significant reduction on attenuation coefficient for high frequencies values and large diameters. The analysis results presented here especially for low frequencies ranges can provide a reliable support for the similar experimental studies in related the magnetic field effects.


Author(s):  
R. Nandkeolyar ◽  
M. Narayana ◽  
S. S. Motsa ◽  
P. Sibanda

The steady hydromagnetic flow of a viscous, incompressible, perfectly conducting, and heat absorbing fluid past a vertical flat plate under the influence of an aligned magnetic field is studied. The flow is subject to mixed convective heat transfer. The fluid is assumed to have a reasonably high magnetic Prandtl number which causes significant-induced magnetic field effects. Such fluid flows find application in many magnetohydrodynamic devices including MHD power-generation. The effects of viscous dissipation and heat absorption by the fluid are investigated. The governing nonlinear partial differential equations are converted into a set of nonsimilar partial differential equations which are then solved using a spectral quasi-linearization method (SQLM). The effects of the important parameters on the fluid velocity, induced magnetic field, fluid temperature and as well as on the coefficient of skin-friction and the Nusselt number are discussed qualitatively.


2020 ◽  
Vol 11 ◽  
pp. 976-990
Author(s):  
Santoshi Misra ◽  
Govardhan Kamatam

The study of magnetohydrodynamic flow of a nanoparticle suspension under the influence of varied dimensionless parameters has been the focus of research in contemporary times. This work models the effect of magnetic field, heat generation and absorption parameter in a steady, laminar, two-dimensional boundary layer flow of a nanofluid over a permeable stretching sheet at a given surface temperature and partial slip. The highly nonlinear governing equations are solved numerically using similarity transformations with suitable boundary conditions and converted to ordinary differential equations. A computational model is setup using FORTRAN, where a relevant Adam’s predictor–corrector method is employed to solve the equations. The impact of the dimensionless parameters, including the Brownian motion, thermophoresis, magnetic field, heat generation and absorption parameters, on the velocity, temperature and nanoparticle concentration of fluid flow are analysed systematically.


2017 ◽  
Vol 231 (2) ◽  
Author(s):  
Anatoly R. Melnikov ◽  
Vladimir N. Verkhovlyuk ◽  
Evgeny V. Kalneus ◽  
Valeri V. Korolev ◽  
Vsevolod I. Borovkov ◽  
...  

AbstractWe suggest a convenient probe exciplex system for studies in radiation spin chemistry based on a novel acceptor-substituted diphenylacetylene, 1-(phenylethynyl)-4-(trifluoromethyl)benzene that has a very short fluorescence lifetime (<200 ps) and low quantum yield (0.01) of intrinsic emission, provides efficient electron capture in alkanes and efficient exciplex formation upon recombination in pair with DMA radical cation, while exhibiting a shifted to red exciplex emission band as compared to the parent system DMA – diphenylacetylene. After chemical, luminescent, radiation and spin-chemical characterization of the new system we used the magnitude of magnetic field effect in its exciplex emission band for experimental estimation of the fraction of spin-correlated radical ion pairs under X-irradiation with upper energy cutoff 40 keV in a set of 11 alkanes. For linear and branched alkanes magnetic field effects and the corresponding fractions are approximately 19–20% and 0.28, while for cyclic alkanes they are lower at 16–17% and 0.22, respectively.


2016 ◽  
Vol 21 (2) ◽  
pp. 423-446 ◽  
Author(s):  
T. Linga Raju ◽  
B. Neela Rao

AbstractAn unsteady MHD two-layered fluid flow of electrically conducting fluids in a horizontal channel bounded by two parallel porous plates under the influence of a transversely applied uniform strong magnetic field in a rotating system is analyzed. The flow is driven by a common constant pressure gradient in a channel bounded by two parallel porous plates, one being stationary and the other oscillatory. The two fluids are assumed to be incompressible, electrically conducting with different viscosities and electrical conductivities. The governing partial differential equations are reduced to the linear ordinary differential equations using two-term series. The resulting equations are solved analytically to obtain exact solutions for the velocity distributions (primary and secondary) in the two regions respectively, by assuming their solutions as a combination of both the steady state and time dependent components of the solutions. Numerical values of the velocity distributions are computed for different sets of values of the governing parameters involved in the study and their corresponding profiles are also plotted. The details of the flow characteristics and their dependence on the governing parameters involved, such as the Hartmann number, Taylor number, porous parameter, ratio of the viscosities, electrical conductivities and heights are discussed. Also an observation is made how the velocity distributions vary with the rotating hydromagnetic interaction in the case of steady and unsteady flow motions. The primary velocity distributions in the two regions are seen to decrease with an increase in the Taylor number, but an increase in the Taylor number causes a rise in secondary velocity distributions. It is found that an increase in the porous parameter decreases both the primary and secondary velocity distributions in the two regions.


2020 ◽  
Author(s):  
Marcin Konowalczyk ◽  
Olivia Foster Vander Elst ◽  
Jonathan Storey

Modulated magnetically altered reaction yield (ModMARY) spectroscopy is a derivative variant of fluorescence detected magnetic field effect measurement, where the applied magnetic field has both a constant and a modulated component. As in many derivative spectroscopy techniques, the signal to noise ratio scales with the magnitude of the modulation. High modulation amplitudes, however, distort the signal and can obscure small features of the measured spectrum. In order to detect weak magnetic field effects (including the low field effect) a balance of the two has to be found. In this work we look in depth at the origin of the distortion of the MARY signal by field modulation. We then present an overtone detection scheme, as well as a data analysis method which allows for correct fitting of both harmonic and overtone signals of the modulation broadened MARY data. This allows us to robustly reconstruct the underlying MARY curve at different modulation depths. To illustrate the usefulness of the technique, we show measurements and analysis of a well known magnetosensitive system of pyrene / 1,3-dicyanobenzene (Py/DCB). The measurements of first (h1) and second (h2) harmonic spectra are performed at different modulation depths for both natural isotopic abundance, and perdeuterated pyrene samples.<br>


2020 ◽  
Vol 12 (5) ◽  
pp. 657-661
Author(s):  
Zohreh Aliannejadi

In many cases such as production of metal sheets, the behavior of fluid flow and heat transfer in the neighborhood of a hot plate is very important. The CFD simulation of fluid flow is a widespread study that reveals detail information about the fluid flow in the calculated domain. In this study, the flow and heat transfer of a specific fluid in the above area of a stretching plate is examined analytically to find the variation of skin friction and Nusselt number. For this purpose, the similarity transformations can be employed to achieve the ordinary differential equations from the governing partial differential equations. The optimal homotopy asymptotic method (OHAM) is used to solve the ordinary differential equations which is applicable in solving of nonlinear equations. The effects of magnetic field on the analytical results from solving the equations are evaluated in detail. It is found that the thickness of the flow boundary layer decreases and the thickness of the thermal boundary layer increases by increasing in the magnetic field. Moreover, the Nusselt number is lower and skin friction is higher for the higher values of the magnetic field.


1976 ◽  
Vol 31 (5) ◽  
pp. 499-500 ◽  
Author(s):  
R. Haberkorn ◽  
M. E. Midiel-Beyerle

Abstract A theoretical description for the magnetic field dependence of geminate recombination as observed in transient spectroscopy of electron transfer reactions, is given and applications of this novel magnetic field effect are discussed.


1994 ◽  
Vol 13 (3-4) ◽  
pp. 223-239 ◽  
Author(s):  
Haruo Abe

The chemiluminescence intensity in the low pressure diffusion flame of the CS2 + O/N2 system was found to be considerably affected by external magnetic fields. The emitter in the flame was identified as the main emitter in the SO2 afterglow. The measurements of the field strength dependence, collisional effect, and spectral distribution of the magnetic field effect revealed the major emitter as the SO2 in the C˜ state. External magnetic fields were also found to quench fluorescence remarkably emitted from the vibronic levels just below the predissociation threshold in the C˜ state. From the observed vibrational-level, field-strength, and pressure dependences of the magnetic quenching, it became evident that the major emitter of chemiluminescence in the flame could be assigned to the SO2 molecule in the vibronic levels located at about 800 cm–1 below the predissociation threshold in the C˜ state


Sign in / Sign up

Export Citation Format

Share Document