scholarly journals A Simple Proposal for Including Designer Preferences in Multi-Objective Optimization Problems

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 991
Author(s):  
Xavier Blasco ◽  
Gilberto Reynoso-Meza ◽  
Enrique A. Sánchez-Pérez ◽  
Juan Vicente Sánchez-Pérez ◽  
Natalia Jonard-Pérez

Including designer preferences in every phase of the resolution of a multi-objective optimization problem is a fundamental issue to achieve a good quality in the final solution. To consider preferences, the proposal of this paper is based on the definition of what we call a preference basis that shows the preferred optimization directions in the objective space. Associated to this preference basis a new basis in the objective space—dominance basis—is computed. With this new basis the meaning of dominance is reinterpreted to include the designer’s preferences. In this paper, we show the effect of changing the geometric properties of the underlying structure of the Euclidean objective space by including preferences. This way of incorporating preferences is very simple and can be used in two ways: by redefining the optimization problem and/or in the decision-making phase. The approach can be used with any multi-objective optimization algorithm. An advantage of including preferences in the optimization process is that the solutions obtained are focused on the region of interest to the designer and the number of solutions is reduced, which facilitates the interpretation and analysis of the results. The article shows an example of the use of the preference basis and its associated dominance basis in the reformulation of the optimization problem, as well as in the decision-making phase.

Author(s):  
Weijun Wang ◽  
Stéphane Caro ◽  
Fouad Bennis ◽  
Oscar Brito Augusto

For Multi-Objective Robust Optimization Problem (MOROP), it is important to obtain design solutions that are both optimal and robust. To find these solutions, usually, the designer need to set a threshold of the variation of Performance Functions (PFs) before optimization, or add the effects of uncertainties on the original PFs to generate a new Pareto robust front. In this paper, we divide a MOROP into two Multi-Objective Optimization Problems (MOOPs). One is the original MOOP, another one is that we take the Robustness Functions (RFs), robust counterparts of the original PFs, as optimization objectives. After solving these two MOOPs separately, two sets of solutions come out, namely the Pareto Performance Solutions (PP) and the Pareto Robustness Solutions (PR). Make a further development on these two sets, we can get two types of solutions, namely the Pareto Robustness Solutions among the Pareto Performance Solutions (PR(PP)), and the Pareto Performance Solutions among the Pareto Robustness Solutions (PP(PR)). Further more, the intersection of PR(PP) and PP(PR) can represent the intersection of PR and PP well. Then the designer can choose good solutions by comparing the results of PR(PP) and PP(PR). Thanks to this method, we can find out the optimal and robust solutions without setting the threshold of the variation of PFs nor losing the initial Pareto front. Finally, an illustrative example highlights the contributions of the paper.


2012 ◽  
Vol 433-440 ◽  
pp. 2808-2816
Author(s):  
Jian Jin Zheng ◽  
You Shen Xia

This paper presents a new interactive neural network for solving constrained multi-objective optimization problems. The constrained multi-objective optimization problem is reformulated into two constrained single objective optimization problems and two neural networks are designed to obtain the optimal weight and the optimal solution of the two optimization problems respectively. The proposed algorithm has a low computational complexity and is easy to be implemented. Moreover, the proposed algorithm is well applied to the design of digital filters. Computed results illustrate the good performance of the proposed algorithm.


Author(s):  
Eliot Rudnick-Cohen

Abstract Multi-objective decision making problems can sometimes involve an infinite number of objectives. In this paper, an approach is presented for solving multi-objective optimization problems containing an infinite number of parameterized objectives, termed “infinite objective optimization”. A formulation is given for infinite objective optimization problems and an approach for checking whether a Pareto frontier is a solution to this formulation is detailed. Using this approach, a new sampling based approach is developed for solving infinite objective optimization problems. The new approach is tested on several different example problems and is shown to be faster and perform better than a brute force approach.


2014 ◽  
Vol 945-949 ◽  
pp. 2241-2247
Author(s):  
De Gao Zhao ◽  
Qiang Li

This paper deals with application of Non-dominated Sorting Genetic Algorithm with elitism (NSGA-II) to solve multi-objective optimization problems of designing a vehicle-borne radar antenna pedestal. Five technical improvements are proposed due to the disadvantages of NSGA-II. They are as follow: (1) presenting a new method to calculate the fitness of individuals in population; (2) renewing the definition of crowding distance; (3) introducing a threshold for choosing elitist; (4) reducing some redundant sorting process; (5) developing a self-adaptive arithmetic cross and mutation probability. The modified algorithm can lead to better population diversity than the original NSGA-II. Simulation results prove rationality and validity of the modified NSGA-II. A uniformly distributed Pareto front can be obtained by using the modified NSGA-II. Finally, a multi-objective problem of designing a vehicle-borne radar antenna pedestal is settled with the modified algorithm.


2014 ◽  
Vol 962-965 ◽  
pp. 2903-2908
Author(s):  
Yun Lian Liu ◽  
Wen Li ◽  
Tie Bin Wu ◽  
Yun Cheng ◽  
Tao Yun Zhou ◽  
...  

An improved multi-objective genetic algorithm is proposed to solve constrained optimization problems. The constrained optimization problem is converted into a multi-objective optimization problem. In the evolution process, our algorithm is based on multi-objective technique, where the population is divided into dominated and non-dominated subpopulation. Arithmetic crossover operator is utilized for the randomly selected individuals from dominated and non-dominated subpopulation, respectively. The crossover operator can lead gradually the individuals to the extreme point and improve the local searching ability. Diversity mutation operator is introduced for non-dominated subpopulation. Through testing the performance of the proposed algorithm on 3 benchmark functions and 1 engineering optimization problems, and comparing with other meta-heuristics, the result of simulation shows that the proposed algorithm has great ability of global search. Keywords: multi-objective optimization;genetic algorithm;constrained optimization problem;engineering application


2021 ◽  
Vol 11 (19) ◽  
pp. 9153
Author(s):  
Vinicius Renan de Carvalho ◽  
Ender Özcan ◽  
Jaime Simão Sichman

As exact algorithms are unfeasible to solve real optimization problems, due to their computational complexity, meta-heuristics are usually used to solve them. However, choosing a meta-heuristic to solve a particular optimization problem is a non-trivial task, and often requires a time-consuming trial and error process. Hyper-heuristics, which are heuristics to choose heuristics, have been proposed as a means to both simplify and improve algorithm selection or configuration for optimization problems. This paper novel presents a novel cross-domain evaluation for multi-objective optimization: we investigate how four state-of-the-art online hyper-heuristics with different characteristics perform in order to find solutions for eighteen real-world multi-objective optimization problems. These hyper-heuristics were designed in previous studies and tackle the algorithm selection problem from different perspectives: Election-Based, based on Reinforcement Learning and based on a mathematical function. All studied hyper-heuristics control a set of five Multi-Objective Evolutionary Algorithms (MOEAs) as Low-Level (meta-)Heuristics (LLHs) while finding solutions for the optimization problem. To our knowledge, this work is the first to deal conjointly with the following issues: (i) selection of meta-heuristics instead of simple operators (ii) focus on multi-objective optimization problems, (iii) experiments on real world problems and not just function benchmarks. In our experiments, we computed, for each algorithm execution, Hypervolume and IGD+ and compared the results considering the Kruskal–Wallis statistical test. Furthermore, we ranked all the tested algorithms considering three different Friedman Rankings to summarize the cross-domain analysis. Our results showed that hyper-heuristics have a better cross-domain performance than single meta-heuristics, which makes them excellent candidates for solving new multi-objective optimization problems.


2019 ◽  
Vol 25 (5) ◽  
pp. 951-978 ◽  
Author(s):  
Teodoro Macias-Escobar ◽  
Laura Cruz-Reyes ◽  
Bernabé Dorronsoro ◽  
Héctor Fraire-Huacuja ◽  
Nelson Rangel-Valdez ◽  
...  

It is important to know the properties of an optimization problem and the difficulty an algorithm faces to solve it. Population evolvability obtains information related to both elements by analysing the probability of an algorithm to improve current solutions and the degree of those improvements. DPEM_HH is a dynamic multi-objective hyper-heuristic that uses low-level heuristic (LLH) selection methods that apply population evolvability. DPEM_HH uses dynamic multiobjective evolutionary algorithms (DMOEAs) as LLHs to solve dynamic multi-objective optimization problems (DMOPs). Population evolvability is incorporated in DPEM_HH by calculating it on each candidate DMOEA for a set of sampled generations after a change is detected, using those values to select which LLH will be applied. DPEM_HH is tested on multiple DMOPs with dynamic properties that provide several challenges. Experimental results show that DPEM_HH with a greedy LLH selection method that uses average population evolvability values can produce solutions closer to the Pareto optimal front with equal to or better diversity than previously proposed heuristics. This shows the effectiveness and feasibility of the application of population evolvability on hyperheuristics to solve dynamic optimization problems.


2021 ◽  
Vol 8 (1-2) ◽  
pp. 58-65
Author(s):  
Filip Dodigović ◽  
Krešo Ivandić ◽  
Jasmin Jug ◽  
Krešimir Agnezović

The paper investigates the possibility of applying the genetic algorithm NSGA-II to optimize a reinforced concrete retaining wall embedded in saturated silty sand. Multi-objective constrained optimization was performed to minimize the cost, while maximizing the overdesign factors (ODF) against sliding, overturning, and soil bearing resistance. For a given change in ground elevation of 5.0 m, the width of the foundation and the embedment depth were optimized. Comparing the algorithm's performance in the cases of two-objective and three objective optimizations showed that the number of objectives significantly affects its convergence rate. It was also found that the verification of the wall against the sliding yields a lower ODF value than verifications against overturning and soil bearing capacity. Because of that, it is possible to exclude them from the definition of optimization problem. The application of the NSGA-II algorithm has been demonstrated to be an effective tool for determining the set of optimal retaining wall designs.


Author(s):  
Gabriele Eichfelder ◽  
Leo Warnow

AbstractFor a continuous multi-objective optimization problem, it is usually not a practical approach to compute all its nondominated points because there are infinitely many of them. For this reason, a typical approach is to compute an approximation of the nondominated set. A common technique for this approach is to generate a polyhedron which contains the nondominated set. However, often these approximations are used for further evaluations. For those applications a polyhedron is a structure that is not easy to handle. In this paper, we introduce an approximation with a simpler structure respecting the natural ordering. In particular, we compute a box-coverage of the nondominated set. To do so, we use an approach that, in general, allows us to update not only one but several boxes whenever a new nondominated point is found. The algorithm is guaranteed to stop with a finite number of boxes, each being sufficiently thin.


2012 ◽  
Vol 32 (2) ◽  
pp. 331-369 ◽  
Author(s):  
Oscar Brito Augusto ◽  
Fouad Bennis ◽  
Stephane Caro

Sign in / Sign up

Export Citation Format

Share Document