scholarly journals Phi-Bonacci Butterfly Stroke Numbers to Assess Self-Similarity in Elite Swimmers

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1545
Author(s):  
Cristiano Maria Verrelli ◽  
Cristian Romagnoli ◽  
Roxanne Jackson ◽  
Ivo Ferretti ◽  
Giuseppe Annino ◽  
...  

A harmonically self-similar temporal partition, which turns out to be subtly exhibited by elite swimmers at middle distance pace, is formally defined for one of the most technically advanced swimming strokes—the butterfly. This partition relies on the generalized Fibonacci sequence and the golden ratio. Quantitative indices, named ϕ-bonacci butterfly stroke numbers, are proposed to assess such an aforementioned hidden time-harmonic and self-similar structure. An experimental validation on seven international-level swimmers and two national-level swimmers was included. The results of this paper accordingly extend the previous findings in the literature regarding human walking and running at a comfortable speed and front crawl swimming strokes at a middle/long distance pace.

10.14311/1027 ◽  
2008 ◽  
Vol 48 (4) ◽  
Author(s):  
J. Sokoll ◽  
S. Fingerhuth

1202, Fibonacci set up one of the most interesting sequences in number theory. This sequence can be represented by so-called Fibonacci Numbers, and by a binary sequence of zeros and ones. If such a binary Fibonacci Sequence is played back as an audio file, a very dissonant sound results. This is caused by the “almost-periodic”, “self-similar” property of the binary sequence. The ratio of zeros and ones converges to the golden ratio, as do the primary and secondary spectral components intheir frequencies and amplitudes. These Fibonacci Sequences will be characterized using listening tests and psychoacoustic analyses. 


2020 ◽  
Vol 26 (11-12) ◽  
pp. 1564-1578
Author(s):  
Jonathan García ◽  
Carlos A. Gómez ◽  
Florian Luca

Author(s):  
Max I. Phukan ◽  
Rohit K. Thapa ◽  
Gopal Kumar ◽  
Chris Bishop ◽  
Helmi Chaabene ◽  
...  

This study aimed to examine inter-limb jump asymmetries and their association with sport-specific performance in young swimmers. Thirty-eight (male, n = 19; female, n = 19) regional/national level young swimmers (age: 12.3 ± 1.2 years; height: 159.6 ± 8.2 cm; body mass: 52.5 ± 9.2 kg) participated in this study. Inter-limb asymmetries were assessed for single-leg countermovement jump (SLCMJ) and single-leg standing long jump (SLSLJ). Sport-specific performance was evaluated using front crawl (i.e., 50 m and 25 m) and front crawl kick (i.e., 50 m and 25 m). The kappa coefficient revealed a “slight” level of agreement (Κ = 0.156, 0.184, and 0.197 for female, male, and all, respectively) between the direction of asymmetry for SLCMJ and SLSLJ, indicating that asymmetries rarely favored the same limb during both tests. A paired sample t-test showed a significant difference (p = 0.025) between asymmetry scores obtained in SLCMJ and SLSLJ. No significant difference was found in asymmetry scores between males and females (p = 0.099 to 0.977). Additionally, no association between asymmetry scores and sport-specific performance was observed (p > 0.05). Our findings highlight the independent nature of inter-limb asymmetries derived from SLCMJ and SLSLJ among young male and female swimmers. Further, our results suggest no association between jumping asymmetries and sport-specific performance.


2015 ◽  
Vol 10 (2) ◽  
pp. 204-210 ◽  
Author(s):  
Matthew Weston ◽  
Angela E. Hibbs ◽  
Kevin G. Thompson ◽  
Iain R. Spears

Purpose:To quantify the effects of a 12-wk isolated core-training program on 50-m front-crawl swim time and measures of core musculature functionally relevant to swimming.Methods:Twenty national-level junior swimmers (10 male and 10 female, 16 ± 1 y, 171 ± 5 cm, 63 ± 4 kg) participated in the study. Group allocation (intervention [n = 10], control [n = 10]) was based on 2 preexisting swim-training groups who were part of the same swimming club but trained in different groups. The intervention group completed the core training, incorporating exercises targeting the lumbopelvic complex and upper region extending to the scapula, 3 times/wk for 12 wk. While the training was performed in addition to the normal pool-based swimming program, the control group maintained their usual pool-based swimming program. The authors made probabilistic magnitude-based inferences about the effect of the core training on 50-m swim time and functionally relevant measures of core function.Results:Compared with the control group, the core-training intervention group had a possibly large beneficial effect on 50-m swim time (–2.0%; 90% confidence interval –3.8 to –0.2%). Moreover, it showed small to moderate improvements on a timed prone-bridge test (9.0%; 2.1–16.4%) and asymmetric straight-arm pull-down test (23.1%; 13.7–33.4%), and there were moderate to large increases in peak EMG activity of core musculature during isolated tests of maximal voluntary contraction.Conclusion:This is the first study to demonstrate a clear beneficial effect of isolated core training on 50-m front-crawl swim performance.


2002 ◽  
Vol 23 (2) ◽  
pp. 99-104 ◽  
Author(s):  
G. P. Millet ◽  
D. Chollet ◽  
S. Chalies ◽  
J. C. Chatard
Keyword(s):  

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 715
Author(s):  
Piotr Zmijewski ◽  
Agata Leońska-Duniec

The FTO A/T polymorphism (rs9939609) has been strongly associated with body mass-related traits in nonathletic populations, but rarely with elite athletic performance. The aim of the study was to investigate the association between the A/T polymorphism and athlete status in elite swimmers. Polish swimmers (n = 196) who competed in national and international competition at short- (SDS; 50–200 m; n = 147) and long-distance events (LDS; ≥400 m; n = 49) were recruited. The control group included 379 unrelated, sedentary young participants. The participants were all Caucasians. Genotyping was carried out using real-time PCR. It was found that the chance of being an elite swimmer was lower in carriers of the AT and AA genotype compared with TT homozygotes (1.5 and 2.0 times, respectively). These findings were confirmed in an allelic association; the A allele was less frequent in the swimmers compared with controls (p = 0.004). However, when SDS were compared against LDS, no significant differences were observed in genotypic and allelic distribution. The results of our experiment suggest that the variation within the FTO gene can affect elite athlete status. It was demonstrated that harboring the T allele may be beneficial for achieving success in a sport such as swimming.


2002 ◽  
Vol 16 (1) ◽  
pp. 97-102
Author(s):  
DAVID J. BENTLEY ◽  
GARY PHILLIPS ◽  
LARS R. MCNAUGHTON ◽  
ALAN M. BATTERHAM

Author(s):  
Gennady M. Aldonin ◽  
◽  
Vasily V. Cherepanov ◽  

In domestic and foreign practice, a great deal of experience has been accumulated in the creation of means for monitoring the functional state of the human body. The existing complexes mainly analyze the electrocardiogram, blood pressure and a number of other physiological parameters. Diagnostics is often based on formal statistical data which are not always correct due to the nonstationarity of bioprocesses and without taking into account their physical nature. An urgent task of monitoring the state of the cardiovascular system is the creation of effective algorithms for computer technologies to process biosignals based on nonlinear dynamic models of body systems since biosystems and bioprocesses have a nonlinear nature and fractal structure. The nervous and muscular systems of the heart, the vascular and bronchial systems of the human body are examples of such structures. The connection of body systems with their organization in the form of self-similar fractal structures with scaling close to the “golden ratio” makes it possible to diagnose them topically. It is possible to obtain detailed information about the state of the human body’s bio-networks for topical diagnostics on the basis of the wavelet analysis of biosignals (the so-called wavelet-introscopy). With the help of wavelet transform, it is possible to reveal the structure of biosystems and bioprocesses, as a picture of the lines of local extrema of wavelet diagrams of biosignals. Mathematical models and software for wavelet introscopy make it possible to extract additional information from biosignals about the state of biosystems. Early detection of latent forms of diseases using wavelet introscopy can shorten the cure time and reduce the consequences of disorders of the functional state of the body (FSO), and reduce the risk of disability. Taking into account the factors of organizing the body’s biosystems in the form of self-similar fractal structures with a scaling close to the “golden ratio” makes it possible to create a technique for topical diagnostics of the most important biosystems of the human body.


Author(s):  
Rannyelly Rodrigues de Oliveira ◽  
Francisco Régis Vieira Alves ◽  
Rodrigo Sychocki da Silva

Resumo: O presente artigo apresenta uma abordagem de investigação no contexto da História da Matemática, envolvendo situações que visam oportunizar o entendimento da extensão, evolução e generalização de propriedades da Sequência de Fibonacci. Dessa forma, abordam-se duas situações. A primeira, envolvendo a descrição da fórmula de Binnet no campo dos inteiros. Logo em seguida, apresenta-se uma descrição e análise dos termos explícitos presentes na Sequência Polinomial de Fibonacci. O escopo da presente proposta de atividade busca a divulgação científica de noções envolvendo a generalização, ainda atual, fato que acentua o caráter ubíquo da Sequência de Fibonacci. À vista disso, a proposta de experimento didático está fundamentada na organização das características da Engenharia Didática. Almeja-se, além da validação interna das hipóteses levantadas durante a investigação, contribuir com a formação inicial de estudantes dos cursos de Licenciatura em Matemática que virem a estudar o tema.Palavras-chave: Atividades de investigação. Engenharia Didática. História da Matemática. Sequência Generalizada de Fibonacci.  THE STUDY OF MATHEMATICAL DEFINITIONS IN THE CONTEXT OF HISTORICAL RESEARCH: A DIDACTIC EXPERIMENT INVOLVING DIDACTIC ENGINEERING AND FIBONACCI POLYNOMIAL SEQUENCESAbstract: This article presents a research approach within the context of History of Mathematics, involving situations that aim to provide an understanding of the extension, evolution and generalization of properties of the Fibonacci Sequence. In this way, two situations are addressed. The first, involving the description of Binet's formula in the integer field. Then, a description and analysis of the explicit terms present in the Fibonacci Polynomial Sequence is presented. The scope of this activity proposal seeks the scientific dissemination of notions involving generalization, still current, a fact that accentuates the ubiquitous character of the Fibonacci Sequence. Thus the proposal of didactic experiment is based on the organized in the characteristics of Didactic Engineering, beyond the internal validation of the hypotheses raised during the investigation this paper aims at contributing to initial education of undergrad   Mathematicsof students that may come to study the subject.Keywords: Research activities. Didactic Engineering. History of Mathematics. Generalized Fibonacci Sequence.


In this article, we explore the representation of the product of k consecutive Fibonacci numbers as the sum of kth power of Fibonacci numbers. We also present a formula for finding the coefficients of the Fibonacci numbers appearing in this representation. Finally, we extend the idea to the case of generalized Fibonacci sequence and also, we produce another formula for finding the coefficients of Fibonacci numbers appearing in the representation of three consecutive Fibonacci numbers as a particular case. Also, we point out some amazing applications of Fibonacci numbers.


Sign in / Sign up

Export Citation Format

Share Document