Coordination in Front Crawl in Elite Triathletes and Elite Swimmers

2002 ◽  
Vol 23 (2) ◽  
pp. 99-104 ◽  
Author(s):  
G. P. Millet ◽  
D. Chollet ◽  
S. Chalies ◽  
J. C. Chatard
Keyword(s):  
2002 ◽  
Vol 16 (1) ◽  
pp. 97-102
Author(s):  
DAVID J. BENTLEY ◽  
GARY PHILLIPS ◽  
LARS R. MCNAUGHTON ◽  
ALAN M. BATTERHAM

Sports ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 235 ◽  
Author(s):  
Bjørn Harald Olstad ◽  
Veronica Bjørlykke ◽  
Daniela Schäfer Olstad

The main purpose of this study was to identify whether a different protocol to achieve maximal heart rate should be used in sprinters when compared to middle-distance swimmers. As incorporating running training into swim training is gaining increased popularity, a secondary aim was to determine the difference in maximal heart rate between front crawl swimming and running among elite swimmers. Twelve elite swimmers (4 female and 8 male, 7 sprinters and 5 middle-distance, age 18.8 years and body mass index 22.9 kg/m2) swam three different maximal heart rate protocols using a 50 m, 100 m and 200 m step-test protocol followed by a maximal heart rate test in running. There were no differences in maximal heart rate between sprinters and middle-distance swimmers in each of the swimming protocols or between land and water (all p ≥ 0.05). There were no significant differences in maximal heart rate beats-per-minute (bpm) between the 200 m (mean ± SD; 192.0 ± 6.9 bpm), 100 m (190.8 ± 8.3 bpm) or 50 m protocol (191.9 ± 8.4 bpm). Maximal heart rate was 6.7 ± 5.3 bpm lower for swimming compared to running (199.9 ± 8.9 bpm for running; p = 0.015). We conclude that all reported step-test protocols were suitable for achieving maximal heart rate during front crawl swimming and suggest that no separate protocol is needed for swimmers specialized on sprint or middle-distance. Further, we suggest conducting sport-specific maximal heart rate tests for different sports that are targeted to improve the aerobic capacity among the elite swimmers of today.


Author(s):  
DAVID J. BENTLEY ◽  
GARY PHILLIPS ◽  
LARS R. McNAUGHTON ◽  
ALAN M. BATTERHAM

2016 ◽  
Vol 11 (4) ◽  
pp. 419-424 ◽  
Author(s):  
Diego Chaverri ◽  
Thorsten Schuller ◽  
Xavier Iglesias ◽  
Uwe Hoffmann ◽  
Ferran A. Rodríguez

Purpose:Assessing cardiopulmonary function during swimming is a complex and cumbersome procedure. Backward extrapolation is often used to predict peak oxygen uptake (V̇O2peak) during unimpeded swimming, but error can derive from a delay at the onset of V̇O2 recovery. The authors assessed the validity of a mathematical model based on heart rate (HR) and postexercise V̇O2 kinetics for the estimation of V̇O2peak during exercise.Methods:34 elite swimmers performed a maximal front-crawl 200-m swim. V̇O2 was measured breath by breath and HR from beat-to-beat intervals. Data were time-aligned and 1-s-interpolated. Exercise V̇O2peak was the average of the last 20 s of exercise. Postexercise V̇O2 was the first 20-s average during the immediate recovery. Predicted V̇O2 values (pV̇O2) were computed using the equation: pV̇O2(t) = V̇O2(t) HRend-exercise/HR(t). Average values were calculated for different time intervals and compared with measured exercise V̇O2peak.Results:Postexercise V̇O2 (0–20 s) underestimated V̇O2peak by 3.3% (95% CI = 9.8% underestimation to 3.2% overestimation, mean difference = –116 mL/min, SEE = 4.2%, P = .001). The best V̇O2peak estimates were offered by pV̇O2peak from 0 to 20 s (r2 = .96, mean difference = 17 mL/min, SEE = 3.8%).Conclusions:The high correlation (r2 = .86–.96) and agreement between exercise and predicted V̇O2 support the validity of the model, which provides accurate V̇O2peak estimations after a single maximal swim while avoiding the error of backward extrapolation and allowing the subject to swim completely unimpeded.


2012 ◽  
Vol 34 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Daniel López-Plaza ◽  
Fernando Alacid ◽  
Pedro A. López-Miñarro ◽  
José M. Muyor

AbstractThe purpose of this study was to determine the influence of different sizes of hand paddles on kinematicparameters during a 100 m freestyle swimming performance in elite swimmers. Nine elite swimmers (19.1 ± 1.9 years)completed three tests of 100 m without paddles, with small paddles (271.27 cm2) and with large paddles (332.67 cm2),respectively. One video camera was used to record the performance during the three trials. The mean swimmingvelocity, stroke rate and stroke length were measured in the central 10 meters of each 50 m length. The results showedthat stroke length tended to increase significantly when wearing hand paddles (p < 0.05) during both the first andsecond 50 m sections whereas the increase in swimming velocity occurred only in the second 50 m (p < 0.05).Conversely, the stroke rate showed a slight decreasing trend with increasing paddle size. During the 100 m freestyletrial the stroke kinematics were changed significantly as a result of the increase in propelling surface size when handpaddles were worn.


Author(s):  
Mahdi Hamidi Rad ◽  
Kamiar Aminian ◽  
Vincent Gremeaux ◽  
Fabien Massé ◽  
Farzin Dadashi

Comprehensive monitoring of performance is essential for swimmers and swimming coaches to optimize the training. Regardless of the swimming technique, the swimmer passes various swimming phases from wall to wall, including a dive into the water or wall push-off, then glide and strokes preparation and finally, swimming up to the turn. The coach focuses on improving the performance of the swimmer in each of these phases. The purpose of this study was to assess the potential of using a sacrum-worn inertial measurement unit (IMU) for performance evaluation in each swimming phase (wall push-off, glide, stroke preparation and swimming) of elite swimmers in four main swimming techniques (i.e. front crawl, breaststroke, butterfly and backstroke). Nineteen swimmers were asked to wear a sacrum IMU and swim four one-way 25 m trials in each technique, attached to a tethered speedometer and filmed by cameras in the whole lap as reference systems. Based on the literature, several goal metrics were extracted from the instantaneous velocity (e.g. average velocity per stroke cycle) and displacement (e.g. time to reach 15 m from the wall) data from a tethered speedometer for the swimming phases, each one representing the goodness of swimmer’s performance. Following a novel approach, that starts from swimming bout detection and continues until detecting the swimming phases, the IMU kinematic variables in each swimming phase were extracted. The highly associated variables with the corresponding goal metrics were detected by LASSO (least absolute shrinkage and selection operator) variable selection and used for estimating the goal metrics with a linear regression model. The selected kinematic variables were relevant to the motion characteristics of each phase (e.g. selection of propulsion-related variables in wall push-off phase), providing more interpretability to the model. The estimation reached a determination coefficient (R2) value more than 0.75 and a relative RMSE less than 10% for most goal metrics in all swimming techniques. The results show that a single sacrum IMU can provide a wide range of performance-related swimming kinematic variables, useful for performance evaluation in four main swimming techniques.


2020 ◽  
Vol 41 (05) ◽  
pp. 318-327 ◽  
Author(s):  
Diogo Duarte Carvalho ◽  
Susana Soares ◽  
Rodrigo Zacca ◽  
João Sousa ◽  
Daniel Almeida Marinho ◽  
...  

AbstractThe anaerobic threshold (AnT) seems to be not only a physiologic boundary but also a transition after which swimmers technique changes, modifying their biomechanical behaviour. We expanded the AnT concept to a biophysical construct in the four conventional swimming techniques. Seventy-two elite swimmers performed a 5×200 m incremental protocol in their preferred swimming technique (with a 0.05 m·s−1 increase and a 30 s interval between steps). A capillary blood samples were collected from the fingertip and stroke rate (SR) and length (SL) determined for the assessment of [La], SR and SL vs. velocity inflexion points (using the interception of a pair of linear and exponential regression curves). The [La] values at the AnT were 3.3±1.0, 3.9±1.1, 2.9±1 .34 and 4.5±1.4 mmol·l−1 (mean±SD) for front crawl, backstroke, breaststroke and butterfly, and its corresponding velocity correlated highly with those at SR and SL inflection points (r=0.91–0.99, p<0.001). The agreement analyses confirmed that AnT represents a biophysical boundary in the four competitive swimming techniques and can be determined individually using [La] and/or SR/SL. Blood lactate increase speed can help characterise swimmers’ anaerobic behaviour after AnT and between competitive swimming techniques.


1995 ◽  
Vol 78 (2) ◽  
pp. 674-679 ◽  
Author(s):  
C. Capelli ◽  
P. Zamparo ◽  
A. Cigalotto ◽  
M. P. Francescato ◽  
R. G. Soule ◽  
...  

“Underwater torque” (T') is one of the main factors determining the energy cost of front crawl swimming per unit distance (Cs). In turn, T' is defined as the product of the force with which the swimmer's feet tend to sink times the distance between the feet and the center of volume of the lungs. The dependency of Cs on T' was further investigated by determining Cs in a group of 10 recreational swimmers (G1: 4 women and 6 men) and in a group of 8 male elite swimmers (G2) after T' was experimentally modified. This was achieved by securing around the swimmers' waist a plastic tube filled, on different occasions, with air, water, or 1 or 2 kg of lead. Thus, T' was either decreased, unchanged, or increased compared with the natural condition (tube filled with water). Cs was determined, for each T' configuration, at 0.7 m/s for G1 and at 1.0 and 1.2 m/s for G2. For T' equal to the natural value, Cs (in kJ.m-1.m body surface area-2) was 0.36 +/- 0.09 and 0.53 +/- 0.13 for G1 in women and men, respectively, and 0.45 +/- 0.05 and 0.53 +/- 0.06 for G2 at 1.0 and 1.2 m/s, respectively. In a given subject at a given speed, Cs and T' were linearly correlated. To compare different subjects and different speeds, the single values of Cs and T' were normalized by dividing them by the corresponding individual averages. These were calculated from all single values (of Cs or T') obtained from that subject at that speed.(ABSTRACT TRUNCATED AT 250 WORDS)


2014 ◽  
Vol 44 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Yuji Matsuda ◽  
Yosuke Yamada ◽  
Yasushi Ikuta ◽  
Teruo Nomura ◽  
Shingo Oda

Abstract The aim of this study was to examine whether the intracyclic velocity variation (IVV) was lower in elite swimmers than in beginner swimmers at various velocities, and whether differences may be related to arm coordination. Seven elite and nine beginner male swimmers swam front crawl at four different swimming velocities (maximal velocity, 75%, 85%, and 95% of maximal swimming velocity). The index of arm coordination (IDC) was calculated as the lag time between the propulsive phases of each arm. IVV was determined from the coefficient of variation of horizontal velocity within one stroke cycle. IVV for elite swimmers was significantly lower (26%) than that for beginner swimmers at all swimming velocities . In contrast, the IDC was similar between elite and beginner swimmers. These data suggest that IVV is a strong predictor of the skill level for front crawl, and that elite swimmers have techniques to decrease IVV. However, the IDC does not contribute to IVV differences between elite and beginner swimmers.


Sign in / Sign up

Export Citation Format

Share Document