scholarly journals On Progressive Censored Competing Risks Data: Real Data Application and Simulation Study

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1805
Author(s):  
Abd M. Abd El-Raheem ◽  
Mona Hosny ◽  
Mahmoud H. Abu-Moussa

Competing risks are frequently overlooked, and the event of interest is analyzed with conventional statistical techniques. In this article, we consider the analysis of bi-causes of failure in the context of competing risk models using the extension of the exponential distribution under progressive Type-II censoring. Maximum likelihood estimates for the unknown parameters via the expectation-maximization algorithm are obtained. Moreover, the Bayes estimates of the unknown parameters are approximated using Tierney-Kadane and MCMC techniques. Interval estimates using Bayesian and classical techniques are also considered. Two real data sets are investigated to illustrate the different estimation methods, and to compare the suggested model with Weibull distribution. Furthermore, the estimation methods are compared through a comprehensive simulation study.

2020 ◽  
Vol 70 (4) ◽  
pp. 953-978
Author(s):  
Mustafa Ç. Korkmaz ◽  
G. G. Hamedani

AbstractThis paper proposes a new extended Lindley distribution, which has a more flexible density and hazard rate shapes than the Lindley and Power Lindley distributions, based on the mixture distribution structure in order to model with new distribution characteristics real data phenomena. Its some distributional properties such as the shapes, moments, quantile function, Bonferonni and Lorenz curves, mean deviations and order statistics have been obtained. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard function are presented. Different estimation procedures have been employed to estimate the unknown parameters and their performances are compared via Monte Carlo simulations. The flexibility and importance of the proposed model are illustrated by two real data sets.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 510
Author(s):  
Bo Peng ◽  
Zhengqiu Xu ◽  
Min Wang

We introduce a new three-parameter lifetime distribution, the exponentiated Lindley geometric distribution, which exhibits increasing, decreasing, unimodal, and bathtub shaped hazard rates. We provide statistical properties of the new distribution, including shape of the probability density function, hazard rate function, quantile function, order statistics, moments, residual life function, mean deviations, Bonferroni and Lorenz curves, and entropies. We use maximum likelihood estimation of the unknown parameters, and an Expectation-Maximization algorithm is also developed to find the maximum likelihood estimates. The Fisher information matrix is provided to construct the asymptotic confidence intervals. Finally, two real-data examples are analyzed for illustrative purposes.


2017 ◽  
Vol 18 (2) ◽  
pp. 0233 ◽  
Author(s):  
Hassan S Bakouch ◽  
Sanku Dey ◽  
Pedro Luiz Ramos ◽  
Francisco Louzada

In this paper, we have considered different estimation methods of the unknown parameters of a binomial-exponential 2 distribution. First, we briefly describe different frequentist approaches such as the method of moments, modified moments, ordinary least-squares estimation, weightedleast-squares estimation, percentile, maximum product of spacings, Cramer-von Mises type minimum distance, Anderson-Darling and Right-tail Anderson-Darling, and compare them using extensive numerical simulations. We apply our proposed methodology to three real data sets related to the total monthly rainfall during April, May and September at Sao Carlos, Brazil.


Author(s):  
Rui Hua ◽  
Wenhao Gui

In survival analysis, more than one factor typically contributes to individual failure. In addition, censoring is inevitable in lifespan tests or reliability studies due to external causes or experimental purposes. In this article, the competing risks model is considered and investigated under progressively Type-II censoring where data is from Lomax distributions. Assumptions are further made that these competitive factors are independently distributed, and the latent lifetimes of these factors follow Lomax distributions where both scale parameters and shape parameters are different. For all unknown parameters, maximum likelihood estimates have been attained by Newton-Raphson (NR) method as well as expectation maximization (EM) method, and then the approximate confidence intervals are acquired, in addition to bootstrap confidence intervals. Furthermore, under square error and LINEX loss functions, Bayes estimates and corresponding highest posterior density credible intervals are successively constructed. Finally, simulation experiments are implemented to access performance of several proposed methods in this article, and laboratory dataset is presented and analyzed for illustrative purposes.


Author(s):  
Fastel Chipepa ◽  
Boikanyo Makubate ◽  
Broderick Oluyede ◽  
Kethamile Rannona

We present a new class of distributions called the Topp-Leone-G Power Series (TL-GPS) class of distributions. This model is obtained by compounding the Topp-Leone-G distribution with the power series distribution. Statistical prop- erties of the TL-GPS class of distributions are obtained. Maximum likelihood estimates for the proposed model were obtained. A simulation study is carried out for the special case of Topp-Leone Log-Logistic Poisson distribution to assess the performance of the maximum likelihood estimates. Finally, we apply Topp-Leone-log-logistic Poisson distribution to real data sets to illustrate the usefulness and applicability of the proposed class of distributions.


2021 ◽  
Vol 48 (3) ◽  
Author(s):  
Ahmed Z. Afify ◽  
◽  
Ahmed I. Shawky ◽  
Mazen Nassar ◽  
◽  
...  

This article proposes a new extension of the inverse Weibull distribution called, logarithmic transformed inverse Weibull distribution which can provide better fits than some of its well-known extensions. The proposed distribution contains inverse Weibull, inverse Rayleigh, inverse exponential, logarithmic transformed inverse Rayleigh and logarithmic transformed inverse exponential distributions as special sub-models. Our main focus is to derive some of its mathematical properties along with the estimation of its unknown parameters using frequentist and Bayesian estimation methods. We compare the performances of the proposed estimators using extensive numerical simulations for both small and large samples. The importance and potentiality of this distribution is analyzed via two real data sets.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Huda M. Alshanbari ◽  
Abd Al-Aziz Hosni El-Bagoury ◽  
Ahmed M. Gemeay ◽  
E. H. Hafez ◽  
Ahmed Sedky Eldeeb

This paper introduced a relatively new mixture distribution that results from a mixture of Fréchet–Weibull and Pareto distributions. Some properties of the new statistical model were derived, such as moments with their related measures, moment generating function, mean residual life function, and mean deviation. Furthermore , different estimation methods were introduced for determining the unknown parameters of the proposed model. Finally, we introduced three real data sets which were applied to our distribution and compared them with other well-known statistical competitive models to show the superiority of our model for fitting the three real data sets, and we can clearly see that our distribution outperforms its competitors. Also, to verify our results, we carried out the existence and uniqueness test to the log-likelihood to determine whether the roots are global maximum or not.


Author(s):  
Samir Ashour ◽  
Wael Abu El Azm

<p>This paper is concerned with the estimators problems of the generalized Weibull distribution based on Type-I hybrid progressive censoring scheme (Type-I PHCS) in the presence of competing risks when the cause of failure of each item is known. Maximum likelihood estimates and the corresponding Fisher information matrix are obtained. We generalized Kundu and Joarder [7] results in the case of the exponential distribution while, the corresponding results in the case of the generalized exponential and Weibull distributions may be obtained as a special cases. A real data set is used to illustrate the theoretical results.</p>


2021 ◽  
Author(s):  
Jakob Raymaekers ◽  
Peter J. Rousseeuw

AbstractMany real data sets contain numerical features (variables) whose distribution is far from normal (Gaussian). Instead, their distribution is often skewed. In order to handle such data it is customary to preprocess the variables to make them more normal. The Box–Cox and Yeo–Johnson transformations are well-known tools for this. However, the standard maximum likelihood estimator of their transformation parameter is highly sensitive to outliers, and will often try to move outliers inward at the expense of the normality of the central part of the data. We propose a modification of these transformations as well as an estimator of the transformation parameter that is robust to outliers, so the transformed data can be approximately normal in the center and a few outliers may deviate from it. It compares favorably to existing techniques in an extensive simulation study and on real data.


Stats ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 28-45
Author(s):  
Vasili B.V. Nagarjuna ◽  
R. Vishnu Vardhan ◽  
Christophe Chesneau

In this paper, a new five-parameter distribution is proposed using the functionalities of the Kumaraswamy generalized family of distributions and the features of the power Lomax distribution. It is named as Kumaraswamy generalized power Lomax distribution. In a first approach, we derive its main probability and reliability functions, with a visualization of its modeling behavior by considering different parameter combinations. As prime quality, the corresponding hazard rate function is very flexible; it possesses decreasing, increasing and inverted (upside-down) bathtub shapes. Also, decreasing-increasing-decreasing shapes are nicely observed. Some important characteristics of the Kumaraswamy generalized power Lomax distribution are derived, including moments, entropy measures and order statistics. The second approach is statistical. The maximum likelihood estimates of the parameters are described and a brief simulation study shows their effectiveness. Two real data sets are taken to show how the proposed distribution can be applied concretely; parameter estimates are obtained and fitting comparisons are performed with other well-established Lomax based distributions. The Kumaraswamy generalized power Lomax distribution turns out to be best by capturing fine details in the structure of the data considered.


Sign in / Sign up

Export Citation Format

Share Document