scholarly journals Modelling the Process of Production of Diesel Fuels by the Use of Generalized Nets

Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2351
Author(s):  
Danail Dichev Stratiev ◽  
Dicho Stratiev ◽  
Krassimir Atanassov

The process of commodity diesel fuel production in a refinery has been modelled by the use of the Generalized Net (GN) apparatus. GNs are extensions of Petri nets and of all their modifications and extensions. The model accounts for the orders of different grades of diesel fuel and the available amounts of the different diesel fuel components. It can be used for the synchronization and optimization of these processes.

2010 ◽  
Vol 46 (2) ◽  
pp. 87-90
Author(s):  
O. V. Ugryumov ◽  
O. A. Varnavskaya ◽  
F. Sh. Shakirov ◽  
G. V. Romanov

2021 ◽  
Vol 66 (05) ◽  
pp. 106-108
Author(s):  
Aytac Turab qızı Hüseynova ◽  

The Oil Refinery of Heydar Aliyev was created in July 1953 as a new oil refining plant Baki. The combined atmospheric vacuum plant is the main plant at the oil refining factory and its starting capacity produces 6 million tons of crude oil. In 2010, 43,000 tons A-98, 1.18 tons of A-92 and 19,700 tons of gasoline A-80. At the same time, 600 400t kerosene, 214,000 diesel fuels, 214,000 tons. Liquid gas, 267 500t coke and 220 600t. With this investigation, the history of the oil refinery and the details of modernization were considered. 21 out of 24 types of Azerbaijani oil are processed at the Baku Oil Refinery named after Heydar Aliyev, of which 15 types of oil products, including gasoline, aviation kerosene, diesel fuel, fuel oil, petroleum coke, etc. are produced. The plant fully meets the needs of the republic in oil products. In addition, 45% of oil products are exported to foreign countries. Key words: Azerbaijani, oil, recycling, factory, modernization


Author(s):  
F. Daneshvar ◽  
N. Jahani ◽  
M. B. Shafii

In this experimental study, a four stroke diesel engine was conducted to investigate the effect of adding water-based ferrofluid to diesel fuel on engine performance. To our knowledge, Magnetic nanoparticles had not been used before. To this end, emulsified diesel fuels of 0, 0.4, and 0.8 water-based ferrofluid/Diesel ratios by volume were used as fuel. The ferrofluid used in this study was a handmade water-based ferrofluid prepared by the authors. The results show that adding water-based ferrofluid to diesel fuel has a perceptible effect on engine performance, increasing the brake thermal efficiency relatively up to 12%, and decreasing the brake specific fuel consumption relatively up to 11% as compared to diesel fuel. In addition, the results indicate that increasing ferrofluid concentration will magnify the results. Furthermore, it was found that magnetic nanoparticles can be collected at the engine exhaust using magnetic bar.


1988 ◽  
Author(s):  
Hajime Ise ◽  
Hiroshi Hirano ◽  
Nobuyoshi Nozaki ◽  
Haruo Takizawa ◽  
Mitsuo Tamanouchi ◽  
...  

Author(s):  
M Canakci

Biodiesel is an alternative diesel fuel that can be produced from renewable feedstocks such as vegetable oils, waste frying oils, and animal fats. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel. Many engine manufacturers have included this fuel in their warranties since it can be used in diesel engines without significant modification. However, the fuel properties such as cetane number, heat of combustion, specific gravity, and kinematic viscosity affect the combustion, engine performance and emission characteristics. In this study, the engine performance and emissions characteristics of two different petroleum diesel fuels (No. 1 and No. 2 diesel fuels) and biodiesel from soybean oil and its 20 per cent blends with No. 2 diesel fuel were compared. The results showed that the engine performance of the neat biodiesel and its blend was similar to that of No. 2 diesel fuel with nearly the same brake fuel conversion efficiency, and slightly higher fuel consumption. CO2 emission for the biodiesel was slightly higher than for the No. 2 diesel fuel. Compared with diesel fuels, biodiesel produced lower exhaust emissions, except NO x.


2021 ◽  
pp. 49-54
Author(s):  
V.Kh. Nurullayev ◽  
◽  
Kh.G. Ismayilova ◽  
L.M. Shikhiyeva ◽  
◽  
...  

The paper presents up-to-date and perspective requirements for the quality of diesel fuels. The effect of chemical, as well as fractional composition on the quality of diesel fuels is marked. The capability of obtaining prospective ecologically friendly diesel fuel based on the mixture of Azerbaijani oils via hydro-treatment in the presence of the catalyst of alumonickelmolibdene is noted. Ecologically friendly diesel fuels with ASTMD 4294 by sulfur - 0.039 % mass, ASTMD 3227 by sour sulfur - 0.006 % mass, ASTMD 5708 by metals: V ˃ 2 mg/kg, Ni ˃ 1 mg/kg, Fe ˃ 3 mg/kg, Na ˃ 8 mg/kg, as well as with the freezing temperature of ASTMD 97 – 50 оС have been obtained. Such kinds of diesel fuel meet EN standards and provide environmental safety in storage and transportation to the European countries. The prospect of obtaining and using buffer plug (mixture of petroleum products) during consistent pumping of various sorts of oil products without ecologic-economic risks of jet fuels is shown as well.


2018 ◽  
Vol 21 (7) ◽  
pp. 1118-1133 ◽  
Author(s):  
Alvaro Vidal ◽  
Carlos Rodriguez ◽  
Phoevos Koukouvinis ◽  
Manolis Gavaises ◽  
Mark A McHugh

The Perturbed-Chain, Statistical Associating Fluid Theory equation of state is utilised to model the effect of pressure and temperature on the density, volatility and viscosity of four Diesel surrogates; these calculated properties are then compared to the properties of several Diesel fuels. Perturbed-Chain, Statistical Associating Fluid Theory calculations are performed using different sources for the pure component parameters. One source utilises literature values obtained from fitting vapour pressure and saturated liquid density data or from correlations based on these parameters. The second source utilises a group contribution method based on the chemical structure of each compound. Both modelling methods deliver similar estimations for surrogate density and volatility that are in close agreement with experimental results obtained at ambient pressure. Surrogate viscosity is calculated using the entropy scaling model with a new mixing rule for calculating mixture model parameters. The closest match of the surrogates to Diesel fuel properties provides mean deviations of 1.7% in density, 2.9% in volatility and 8.3% in viscosity. The Perturbed-Chain, Statistical Associating Fluid Theory results are compared to calculations using the Peng–Robinson equation of state; the greater performance of the Perturbed-Chain, Statistical Associating Fluid Theory approach for calculating fluid properties is demonstrated. Finally, an eight-component surrogate, with properties at high pressure and temperature predicted with the group contribution Perturbed-Chain, Statistical Associating Fluid Theory method, yields the best match for Diesel properties with a combined mean absolute deviation of 7.1% from experimental data found in the literature for conditions up to 373°K and 500 MPa. These results demonstrate the predictive capability of a state-of-the-art equation of state for Diesel fuels at extreme engine operating conditions.


2020 ◽  
Vol 103 (2) ◽  
pp. 449-455
Author(s):  
Adriano Francescangeli ◽  
Vito Daniele ◽  
Paolo Antonio Di Lorenzo ◽  
Magda Franco

Abstract Background: Adulteration of diesel fuel by the addition of vegetable oil is a problem that touches several countries around the world and bypasses the complexity of the specifications regarding the automotive diesel fuel distinguishing between customs, fiscal, and commercial–environmental specifications. At an international level, the adoption of the same analysis methods is important for the harmonization processes and the fluidity of the market. In this context, we assist to the diffusion of the same fraud touching several countries or continents since the limit of the same methods are common to many specifications. For several European countries, the revenue lost as a result of this adulteration consists of billions of euros per year. This enormous amount of illicit money feeds organized criminal networks with huge social and environmental damages. Objective: This work presents a GC method to quantify vegetable oils in the range of 0.2–7% (w/w) in adulterated diesel fuel, intended for use as motor fuel, with or without extraneous heavy mineral oil. Methods: Our study was realized on 100 fraudulent samples collected by the Italian fiscal police in regular oil stations and by the Italian fiscal police and customs officers as a consequence of controls on trucks transporting, in suspicious circumstances, “oil” often declared “antistick and anticorrosion oil” or “protective oil.” Conclusions and Highlights: High reliability of results, external validity, ease of replication, simple instrumentation, and sample preparation make this method well suited for a new “smart” protocol for diesel fuels analysis for customs, fiscal, and antifraud purposes.


Sign in / Sign up

Export Citation Format

Share Document