scholarly journals Incorporating a New Summary Statistic into the Min–Max Approach: A Min–Max–Median, Min–Max–IQR Combination of Biomarkers for Maximising the Youden Index

Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2497
Author(s):  
Rocío Aznar-Gimeno ◽  
Luis M. Esteban ◽  
Gerardo Sanz ◽  
Rafael del-Hoyo-Alonso ◽  
Ricardo Savirón-Cornudella

Linearly combining multiple biomarkers is a common practice that can provide a better diagnostic performance. When the number of biomarkers is sufficiently high, a computational burden problem arises. Liu et al. proposed a distribution-free approach (min–max approach) that linearly combines the minimum and maximum values of the biomarkers, involving only a single coefficient search. However, the combination of minimum and maximum biomarkers alone may not be sufficient in terms of discrimination. In this paper, we propose a new approach that extends that of Liu et al. by incorporating a new summary statistic, specifically, the median or interquartile range (min–max–median and min–max–IQR approaches) in order to find the optimal combination that maximises the Youden index. Although this approach is more computationally intensive than the one proposed by Liu et al, it includes more information and the number of parameters to be estimated remains reasonable. We compare the performance of the proposed approaches (min–max–median and min–max–IQR) with the min–max approach and logistic regression. For this purpose, a wide range of different simulated data scenarios were explored. We also apply the approaches to two real datasets (Duchenne Muscular Dystrophy and Small for Gestational Age).

2019 ◽  
Vol 488 (1) ◽  
pp. 609-632 ◽  
Author(s):  
David Izquierdo-Villalba ◽  
Silvia Bonoli ◽  
Daniele Spinoso ◽  
Yetli Rosas-Guevara ◽  
Bruno M B Henriques ◽  
...  

ABSTRACT We study the cosmological build-up of pseudo-bulges using the L-Galaxies semi-analytical model for galaxy formation with a new approach for following separately the assembly of classical bulges and pseudo-bulges. Classical bulges are assumed to be the result of violent processes (i.e. mergers and starbursts), while the formation of pseudo-bulges is connected to the secular growth of discs. We apply the model to both the Millennium and the Millennium II simulations, in order to study our results across a wide range of stellar masses ($\rm 10^{7}\!-\!10^{11.5}\, {\rm M}_{\odot }$). We find that z = 0 pseudo-bulges mainly reside in galaxies of $\mathit{ M}_{\rm stellar} \, {\sim }\, 10^{10}\!-\!10^{10.5}\, {\rm M}_{\odot }$ ($\mathit{ M}_{\rm halo} \, {\sim }\, 10^{11.5}\!-\!10^{12}\, {\rm M}_{\odot }$) and we recover structural properties of these objects (e.g. sizes and bulge-to-total ratios) that are in good agreement with observational results. Tracing their formation history, we find that pseudo-bulges assembled in galaxies with a very quiet merger history, as opposed to the host galaxies of classical bulges. Regarding the bulge structure, we find that $\, {\sim }\, 30{{\ \rm per\ cent}}$ of the galaxies with a predominant pseudo-bulge feature a composite structure, hosting both a pseudo- and a classical bulge component. The classical component typically constitutes ${\sim }\, 10{{\ \rm per\ cent}}$ of the total bulge galaxy mass. When looking at the properties of the host galaxies, we find that z = 0 pseudo-bulges are hosted by main-sequence galaxies, characterized by a stellar population which is generally younger compared to the one of the hosts of classical bulges.


2017 ◽  
Vol 9 (4) ◽  
Author(s):  
Aylin Gazi Gezgin ◽  
Koray Korkmaz

Retractable plate structure (RPS) is a family of structures that is a set of cover plates connected by revolute joints. There exists wide range of possibilities related with these structures in architecture. Configuring the suitable shape of rigid plates that are able to be enclosed without any gaps or overlaps in both closed and open configurations and eliminating the possibility of contact between the plates during the deployment have been the most important issues in RPS design process. Many researchers have tried to find the most suitable shape by using kinematical or empirical analysis so far. This study presents a novel approach to find the suitable shape of the plates and their assembly order without any kinematical or empirical analysis. This approach is benefited from the one-uniform mathematical tessellation technique that gives the possibilities of tiling a plate using regular polygons without any gaps or overlaps. In the light of this technique, the shape of the plates is determined as regular polygons and two conditions are introduced to form RPS in which regular polygonal plates are connected by only revolute joints. It should be noted that these plates are not allowed to become overlapped during deployment and form gaps in closed configuration. Additionally, this study aims to reach a single degree-of-freedom (DoF) RPS. It presents a systematic method to convert multi-DoF RPS into single DoF RPS by using the similarity between graph theory and the duality of tessellation.


2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


Author(s):  
Nicola Molinari ◽  
Jonathan P. Mailoa ◽  
Boris Kozinsky

We show that strong cation-anion interactions in a wide range of lithium-salt/ionic liquid mixtures result in a negative lithium transference number, using molecular dynamics simulations and rigorous concentrated solution theory. This behavior fundamentally deviates from the one obtained using self-diffusion coefficient analysis and agrees well with experimental electrophoretic NMR measurements, which accounts for ion correlations. We extend these findings to several ionic liquid compositions. We investigate the degree of spatial ionic coordination employing single-linkage cluster analysis, unveiling asymmetrical anion-cation clusters. Additionally, we formulate a way to compute the effective lithium charge that corresponds to and agrees well with electrophoretic measurements and show that lithium effectively carries a negative charge in a remarkably wide range of chemistries and concentrations. The generality of our observation has significant implications for the energy storage community, emphasizing the need to reconsider the potential of these systems as next generation battery electrolytes.<br>


2020 ◽  
Vol 36 (6) ◽  
pp. 98-106
Author(s):  
E.I. Levitin ◽  
B.V. Sviridov ◽  
O.V. Piksasova ◽  
T.E. Shustikova

Currently, simple, rapid, and efficient techniques for DNA isolation from a wide range of organisms are in demand in biotechnology and bioinformatics. A key (and often limiting) step is the cell wall disruption and subsequent DNA extraction from the disintegrated cells. We have developed a new approach to DNA isolation from organisms with robust cell walls. The protocol includes the following steps: treatment of cells or tissue samples with ammonium acetate followed by cell lysis in low-salt buffer with the addition of SDS. Further DNA extraction is carried out according to standard methods. This approach is efficient for high-molecular native DNA isolation from bacteria, ascomycetes, yeast, and mammalian blood; it is also useful for express analysis of environmental microbial isolates and for plasmid extraction for two-hybrid library screening. express method for DNA isolation; ammonium salt treatment (в русских ключевых такой порядок), osmotic breakage of cells This study was financially supported by the NRC "Kurchatov Institute"-GOSNIIGENETIKA Kurchatov Genomic Center.


2021 ◽  
pp. 104973232199379
Author(s):  
Olaug S. Lian ◽  
Sarah Nettleton ◽  
Åge Wifstad ◽  
Christopher Dowrick

In this article, we qualitatively explore the manner and style in which medical encounters between patients and general practitioners (GPs) are mutually conducted, as exhibited in situ in 10 consultations sourced from the One in a Million: Primary Care Consultations Archive in England. Our main objectives are to identify interactional modes, to develop a classification of these modes, and to uncover how modes emerge and shift both within and between consultations. Deploying an interactional perspective and a thematic and narrative analysis of consultation transcripts, we identified five distinctive interactional modes: question and answer (Q&A) mode, lecture mode, probabilistic mode, competition mode, and narrative mode. Most modes are GP-led. Mode shifts within consultations generally map on to the chronology of the medical encounter. Patient-led narrative modes are initiated by patients themselves, which demonstrates agency. Our classification of modes derives from complete naturally occurring consultations, covering a wide range of symptoms, and may have general applicability.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 290
Author(s):  
Maxim Pyzh ◽  
Kevin Keiler ◽  
Simeon I. Mistakidis ◽  
Peter Schmelcher

We address the interplay of few lattice trapped bosons interacting with an impurity atom in a box potential. For the ground state, a classification is performed based on the fidelity allowing to quantify the susceptibility of the composite system to structural changes due to the intercomponent coupling. We analyze the overall response at the many-body level and contrast it to the single-particle level. By inspecting different entropy measures we capture the degree of entanglement and intraspecies correlations for a wide range of intra- and intercomponent interactions and lattice depths. We also spatially resolve the imprint of the entanglement on the one- and two-body density distributions showcasing that it accelerates the phase separation process or acts against spatial localization for repulsive and attractive intercomponent interactions, respectively. The many-body effects on the tunneling dynamics of the individual components, resulting from their counterflow, are also discussed. The tunneling period of the impurity is very sensitive to the value of the impurity-medium coupling due to its effective dressing by the few-body medium. Our work provides implications for engineering localized structures in correlated impurity settings using species selective optical potentials.


2021 ◽  
Vol 11 (8) ◽  
pp. 3397
Author(s):  
Gustavo Assunção ◽  
Nuno Gonçalves ◽  
Paulo Menezes

Human beings have developed fantastic abilities to integrate information from various sensory sources exploring their inherent complementarity. Perceptual capabilities are therefore heightened, enabling, for instance, the well-known "cocktail party" and McGurk effects, i.e., speech disambiguation from a panoply of sound signals. This fusion ability is also key in refining the perception of sound source location, as in distinguishing whose voice is being heard in a group conversation. Furthermore, neuroscience has successfully identified the superior colliculus region in the brain as the one responsible for this modality fusion, with a handful of biological models having been proposed to approach its underlying neurophysiological process. Deriving inspiration from one of these models, this paper presents a methodology for effectively fusing correlated auditory and visual information for active speaker detection. Such an ability can have a wide range of applications, from teleconferencing systems to social robotics. The detection approach initially routes auditory and visual information through two specialized neural network structures. The resulting embeddings are fused via a novel layer based on the superior colliculus, whose topological structure emulates spatial neuron cross-mapping of unimodal perceptual fields. The validation process employed two publicly available datasets, with achieved results confirming and greatly surpassing initial expectations.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 384
Author(s):  
Rocío Hernández-Sanjaime ◽  
Martín González ◽  
Antonio Peñalver ◽  
Jose J. López-Espín

The presence of unaccounted heterogeneity in simultaneous equation models (SEMs) is frequently problematic in many real-life applications. Under the usual assumption of homogeneity, the model can be seriously misspecified, and it can potentially induce an important bias in the parameter estimates. This paper focuses on SEMs in which data are heterogeneous and tend to form clustering structures in the endogenous-variable dataset. Because the identification of different clusters is not straightforward, a two-step strategy that first forms groups among the endogenous observations and then uses the standard simultaneous equation scheme is provided. Methodologically, the proposed approach is based on a variational Bayes learning algorithm and does not need to be executed for varying numbers of groups in order to identify the one that adequately fits the data. We describe the statistical theory, evaluate the performance of the suggested algorithm by using simulated data, and apply the two-step method to a macroeconomic problem.


Author(s):  
Ajay Andrew Gupta

AbstractThe widespread proliferation of and interest in bracket pools that accompany the National Collegiate Athletic Association Division I Men’s Basketball Tournament have created a need to produce a set of predicted winners for each tournament game by people without expert knowledge of college basketball. Previous research has addressed bracket prediction to some degree, but not nearly on the level of the popular interest in the topic. This paper reviews relevant previous research, and then introduces a rating system for teams using game data from that season prior to the tournament. The ratings from this system are used within a novel, four-predictor probability model to produce sets of bracket predictions for each tournament from 2009 to 2014. This dual-proportion probability model is built around the constraint of two teams with a combined 100% probability of winning a given game. This paper also performs Monte Carlo simulation to investigate whether modifications are necessary from an expected value-based prediction system such as the one introduced in the paper, in order to have the maximum bracket score within a defined group. The findings are that selecting one high-probability “upset” team for one to three late rounds games is likely to outperform other strategies, including one with no modifications to the expected value, as long as the upset choice overlaps a large minority of competing brackets while leaving the bracket some distinguishing characteristics in late rounds.


Sign in / Sign up

Export Citation Format

Share Document