scholarly journals Spreading of Infections on Network Models: Percolation Clusters and Random Trees

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3054
Author(s):  
Hector Eduardo Roman ◽  
Fabrizio Croccolo

We discuss network models as a general and suitable framework for describing the spreading of an infectious disease within a population. We discuss two types of finite random structures as building blocks of the network, one based on percolation concepts and the second one on random tree structures. We study, as is done for the SIR model, the time evolution of the number of susceptible (S), infected (I) and recovered (R) individuals, in the presence of a spreading infectious disease, by incorporating a healing mechanism for infecteds. In addition, we discuss in detail the implementation of lockdowns and how to simulate them. For percolation clusters, we present numerical results based on site percolation on a square lattice, while for random trees we derive new analytical results, which are illustrated in detail with a few examples. It is argued that such hierarchical networks can complement the well-known SIR model in most circumstances. We illustrate these ideas by revisiting USA COVID-19 data.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Vesa Kuikka

AbstractWe present methods for analysing hierarchical and overlapping community structure and spreading phenomena on complex networks. Different models can be developed for describing static connectivity or dynamical processes on a network topology. In this study, classical network connectivity and influence spreading models are used as examples for network models. Analysis of results is based on a probability matrix describing interactions between all pairs of nodes in the network. One popular research area has been detecting communities and their structure in complex networks. The community detection method of this study is based on optimising a quality function calculated from the probability matrix. The same method is proposed for detecting underlying groups of nodes that are building blocks of different sub-communities in the network structure. We present different quantitative measures for comparing and ranking solutions of the community detection algorithm. These measures describe properties of sub-communities: strength of a community, probability of formation and robustness of composition. The main contribution of this study is proposing a common methodology for analysing network structure and dynamics on complex networks. We illustrate the community detection methods with two small network topologies. In the case of network spreading models, time development of spreading in the network can be studied. Two different temporal spreading distributions demonstrate the methods with three real-world social networks of different sizes. The Poisson distribution describes a random response time and the e-mail forwarding distribution describes a process of receiving and forwarding messages.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Navavat Pipatsart ◽  
Wannapong Triampo ◽  
Charin Modchang

We presented adaptive random network models to describe human behavioral change during epidemics and performed stochastic simulations of SIR (susceptible-infectious-recovered) epidemic models on adaptive random networks. The interplay between infectious disease dynamics and network adaptation dynamics was investigated in regard to the disease transmission and the cumulative number of infection cases. We found that the cumulative case was reduced and associated with an increasing network adaptation probability but was increased with an increasing disease transmission probability. It was found that the topological changes of the adaptive random networks were able to reduce the cumulative number of infections and also to delay the epidemic peak. Our results also suggest the existence of a critical value for the ratio of disease transmission and adaptation probabilities below which the epidemic cannot occur.


2021 ◽  
Author(s):  
Kian Boon Law ◽  
Kalaiarasu M Peariasamy ◽  
Hishamshah Ibrahim ◽  
Noor Hisham Abdullah

Abstract The risk of contact infection among susceptible individuals in a randomly mixed population can be reduced by the presence of immune individuals and this principle forms the fundamental of herd immunity. The conventional susceptible-infectious-recovered (SIR) model features an infection-induced herd immunity model, but does not include the reducing risk of contact infection among susceptible individuals in the transmission model, therefore tends to overestimate the transmission dynamics of infectious diseases. Here we show that the reducing risk of contact infection among susceptible individuals can be achieved by incorporating the proportion of susceptible individuals (model A) or the inverse of proportion of recovered individuals (model B) in the force of infection of the SIR model. We numerically simulated the conventional SIR model and both new SIR models A and B under the exact condition with a basic reproduction number of 3·0. Prior to the numerical simulation, the threshold for the eradication of infectious disease through herd immunity was expected to be 0·667 (66·7%) for all three models. All three models performed likewise at the initial stage of disease transmission. In the conventional SIR model, the infectious disease subsided when 94·0 % of the population had been infected and recovered, way above the expected threshold for eradication and control of the infectious disease. Both models A and B simulated the infectious disease to diminish when 66·7% and 75·6% of the population had been infected, showing herd immunity might protect more susceptible individuals from the infectious disease as compared to the projection generated by the conventional SIR. Our study shows that model A provides a better framework for modelling herd immunity through vaccination, while model B provides a better framework for modelling herd immunity through infection. Both models overcome the insufficiency of the conventional SIR model in attaining the effect of herd immunity in modelling outputs, which is important and relevant for modelling infectious disease, such as the COVID-19 in a randomly mixed population.


2013 ◽  
Vol 50 (3) ◽  
pp. 603-611 ◽  
Author(s):  
Jean Bertoin

This paper is based on works presented at the 2012 Applied Probability Trust Lecture in Sheffield; its main purpose is to survey the recent asymptotic results of Bertoin (2012a) and Bertoin and Uribe Bravo (2012b) about Bernoulli bond percolation on certain large random trees with logarithmic height. We also provide a general criterion for the existence of giant percolation clusters in large trees, which answers a question raised by David Croydon.


Nanoscale ◽  
2021 ◽  
Author(s):  
Antonios Raptakis ◽  
Arezoo Dianat ◽  
Alexander Croy ◽  
Gianaurelio Cuniberti

This computational study establishes a correlation between the elastic properties of COFs and their building-blocks towards the rational design of new materials with tailored properties.


2000 ◽  
Vol 11 (07) ◽  
pp. 1357-1369 ◽  
Author(s):  
SITANGSHU BIKAS SANTRA ◽  
WILLIAM A. SEITZ

Diffusion on 2D site percolation clusters at p = 0.7, 0.8, and 0.9 above pc on the square lattice in the presence of two crossed bias fields, a local bias B and a global bias E, has been investigated. The global bias E is applied in a fixed global direction whereas the local bias B imposes a rotational constraint on the motion of the diffusing particle. The rms displacement Rt ~ tk in the presence of both biases is studied. Depending on the strength of E and B, the behavior of the random walker changes from diffusion to drift to no-drift or trapping. There is always diffusion for finite B with no global bias. A crossover from drift to no-drift at a critical global bias Ec is observed in the presence of local bias B for all disordered lattices. At the crossover, value of the rms exponent changes from k = 1 to k < 1, the drift velocity vt changes from constant in time t to decreasing power law nature, and the "relaxation" time τ has a maximum rate of change with respect to the global bias E. The value of critical bias Ec depends on the disorder p as well as on the strength of local bias B. Phase diagrams for diffusion, drift, and no-drift are obtained as a function of bias fields E and B for these systems.


1984 ◽  
Vol 53 (12) ◽  
pp. 1121-1124 ◽  
Author(s):  
Hans J. Herrmann ◽  
H. Eugene Stanley

2004 ◽  
Vol 41 (3) ◽  
pp. 816-831
Author(s):  
Aidan Sudbury

An annihilating process is an interacting particle system in which the only interaction is that a particle may kill a neighbouring particle. Since there is no birth and no movement, once a particle has no neighbours its site remains occupied for ever. The survival probability is calculated for a random tree and for the square lattice. A connection is made between annihilating processes and the adsorption of molecules onto surfaces. A one-dimensional adsorption problem is solved in the case in which the two neighbours do not act independently.


2019 ◽  
Author(s):  
Christopher N Davis ◽  
T Deirdre Hollingsworth ◽  
Quentin Caudron ◽  
Michael A Irvine

AbstractComplex, highly computational, individual-based models are abundant in epidemiology. For epidemics such as macro-parasitic diseases, detailed modelling of human behaviour and pathogen life-cycle are required in order to produce accurate results. This can often lead to models that are computationally-expensive to analyse and perform model fitting, and often require many simulation runs in order to build up sufficient statistics. Emulation can provide a more computationally-efficient output of the individual-based model, by approximating it using a statistical model. Previous work has used Gaussian processes in order to achieve this, but these can not deal with multi-modal, heavy-tailed, or discrete distributions. Here, we introduce the concept of a mixture density network (MDN) in its application in the emulation of epidemiological models. MDNs incorporate both a mixture model and a neural network to provide a flexible tool for emulating a variety of models and outputs. We develop an MDN emulation methodology and demonstrate its use on a number of simple models incorporating both normal, gamma and beta distribution outputs. We then explore its use on the stochastic SIR model to predict the final size distribution and infection dynamics. MDNs have the potential to faithfully reproduce multiple outputs of an individual-based model and allow for rapid analysis from a range of users. As such, an open-access library of the method has been released alongside this manuscript.Author summaryInfectious disease modellers have a growing need to expose their models to a variety of stakeholders in interactive, engaging ways that allow them to explore different scenarios. This approach can come with a considerable computational cost that motivates providing a simpler representation of the complex model. We propose the use of mixture density networks as a solution to this problem. These are highly flexible, deep neural network-based models that can emulate a variety of data, including counts and over-dispersion. We explore their use firstly through emulating a negative-binomial distribution, which arises in many places in ecology and parasite epidemiology. We then explore the approach using a stochastic SIR model. We also provide an accompanying Python library with code for all examples given in the manuscript. We believe that the use of emulation will provide a method to package an infectious disease model such that it can be disseminated to the widest audience possible.


Author(s):  
Dora P. Rosati ◽  
Matthew H. Woolhouse ◽  
Benjamin M. Bolker ◽  
David J. D. Earn

Popular songs are often said to be ‘contagious’, ‘infectious’ or ‘viral’. We find that download count time series for many popular songs resemble infectious disease epidemic curves. This paper suggests infectious disease transmission models could help clarify mechanisms that contribute to the ‘spread’ of song preferences and how these mechanisms underlie song popularity. We analysed data from MixRadio, comprising song downloads through Nokia cell phones in Great Britain from 2007 to 2014. We compared the ability of the standard susceptible–infectious–recovered (SIR) epidemic model and a phenomenological (spline) model to fit download time series of popular songs. We fitted these same models to simulated epidemic time series generated by the SIR model. Song downloads are captured better by the SIR model, to the same extent that actual SIR simulations are fitted better by the SIR model than by splines. This suggests that the social processes underlying song popularity are similar to those that drive infectious disease transmission. We draw conclusions about song popularity within specific genres based on estimated SIR parameters. In particular, we argue that faster spread of preferences for Electronica songs may reflect stronger connectivity of the ‘susceptible community’, compared with the larger and broader community that listens to more common genres.


Sign in / Sign up

Export Citation Format

Share Document