scholarly journals Transient Dynamic Analysis of Laminated Composite Plate Subjected to Low-Velocity Impact

2002 ◽  
Vol 7 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Züleyha Aslan ◽  
Ramazan Karakuzu
2006 ◽  
Vol 306-308 ◽  
pp. 285-290
Author(s):  
Young Shin Lee ◽  
Hyun Soo Kim ◽  
Young Jin Choi ◽  
Jae Hoon Kim

The laminated composite structures applied to the wing and the speed brake of an aircraft or the turbine blade of a compressor. These structures may be impacted by birds and hails during operation. They may also be impacted by drop of a tool during manufacture or repair. Unlike high velocity impact damage, which can be easily found by the naked eye, the damage due to low velocity impact may be difficult to detect. Damage which is not detected may cause failure of a structure and result in damage propagation. Growth of damage means reduction of stiffness on the structure. So, exact prediction of damage caused by a low velocity impact is very important in order to guard against sudden failure of the structure. In this study, modified delamination failure criterion has suggested in order to predict the failure behavior of a composite plate subjected to low-velocity impact. The criterion includes the assumption which is matrix cracking mode causes delamination failure. Predicted damage using supposed delamination criterion is similar to experiment results.


2020 ◽  
Vol 18 (2) ◽  
pp. 195
Author(s):  
Redha Akbar Ramadhan ◽  
Muhamad Giri Suada ◽  
Hendri Syamsudin

Composite is a material formed from two or more materials that macroscopically alloyed into one material. Nowadays, composite has been generally applied as lightweight structure of aircraft. This is due to the fact that composites having high strength-to-weight ratio. It means the composites have the capability to take on various loads, despite their lightweight property.Laminate composite is one type of composite that has been generally used in aircraft industries. This type of composite is susceptible to low-velocity impact induced damage. This type of damage can be happening in manufacture, operation, or even in maintenance. Low-velocity impact could cause delamination. Delamination happens when the plies of laminated composites separated at the interface of the plies. This type of damage is categorized as barely visible damage, means that the damage couldn’t be detected with visual inspection. Special method and tool would be needed to detect the damage. Delamination will decrease the strength of the laminated composite.Delamination can be predicted with numerical simulation analysis. With increasing capability of computer, it is possible to predict the delamination and buckling of laminated composite plate. This research presents the comparisons of buckling analysis results on laminated plate composite and damaged laminated plate composite. By the result of LVI simulation, it is shown that low velocity impact of 19.3 Joule causing 6398 mm2 C-Scan delamination area inside the laminated composite. The delamination causing structural instability that will affect buckling resistance of the plate. The result of analysis shows that the existence of delamination inside laminate composite will lower its critical buckling load up to 90% of undamaged laminate’s critical buckling load.Keywords : composite, laminate, delamination, buckling.


2003 ◽  
Vol 59 (1) ◽  
pp. 119-127 ◽  
Author(s):  
Züleyha Aslan ◽  
Ramazan Karakuzu ◽  
Buket Okutan

2007 ◽  
Vol 41 (19) ◽  
pp. 2347-2370 ◽  
Author(s):  
S.M.R. Khalili ◽  
A. Shokuhfar ◽  
F. Ashenai Ghasemi ◽  
K. Malekzadeh

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3367 ◽  
Author(s):  
Ling Chen ◽  
Li-Wei Wu ◽  
Qian Jiang ◽  
Da Tian ◽  
Zhili Zhong ◽  
...  

The effects of thermoplastic polyimide (PI) and polypropylene (PP) fibers and areal density of toughened layer on interlaminar fracture toughness and impact performance of carbon fiber/epoxy (CF/EP) laminated composites were studied. Mode I interlaminar fracture toughness (GIC) was analyzed via double cantilever beam (DCB) tests. When comparing for the toughener type, PI played a positive role in enhancing the mode-I fracture toughness, while PP was not effective due to the less fiber bridge formed during composite curing. The toughening effects of areal density of PI were further investigated by end notched flexure (ENF) testing and low velocity impact testing to better understand the toughening mechanisms. The results revealed that the toughening effect reached its best effectiveness when the areal density of toughened layer was 30 g/m2. Compared with the control group, GIC and GIIC of CF/EP laminated composite were increased by 98.49% and 84.07%, and Fmax and Ee were enhanced by 92.38% and 299.08% under low velocity impact. There is no obvious delamination phenomenon on the surface of laminates after low velocity impact, indicating the improved interlaminar and impact performance of laminated composite.


Sign in / Sign up

Export Citation Format

Share Document