scholarly journals Assessment of Chemical and Physico-Chemical Properties of Cyanobacterial Lipids for Biodiesel Production

Marine Drugs ◽  
2013 ◽  
Vol 11 (7) ◽  
pp. 2365-2381 ◽  
Author(s):  
Patrícia Rós ◽  
Caroline Silva ◽  
Maria Silva-Stenico ◽  
Marli Fiore ◽  
Heizir Castro
Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 791 ◽  
Author(s):  
Inam Ullah Khan ◽  
Zhenhua Yan ◽  
Jun Chen

Biodiesel is a clean and renewable fuel, which is considered as the best alternative to diesel fuel, but the feedstock contributes more than 70% of the cost. The most important constituent essential for biodiesel development is to explore cheap feedstock with high oil content. In this work, we found novel non-edible plant seeds of Koelreuteria paniculata (KP) with high oil contents of 28–30 wt.% and low free fatty acid contents (0.91%), which can serve as a promising feedstock for biodiesel production. KP seed oil can convert into biodiesel/fatty acid methyl esters (FAMEs) by base-catalyzed transesterification with the highest biodiesel production of 95.2% after an optimization process. We obtained the optimal transesterification conditions, i.e., oil/methanol ratio (6:1), catalyst concentration (0.32), reaction temperature (65 °C), stirring rate (700 rpm), and reaction time (80 min). The physico-chemical properties and composition of the FAME were investigated and compared with mineral diesel. The synthesized esters were confirmed and characterized by the application of NMR (1H and 13C), FTIR, and GC-MS. The biofuel produced from KP seed oil satisfies the conditions verbalized by ASTM D6751 and EN14214 standards. Accordingly, KP source oil can be presented as a novel raw material for biofuel fabrication.


2015 ◽  
pp. 237-244 ◽  
Author(s):  
A.M. Giuffrè ◽  
V. Sicari ◽  
M. Capocasale ◽  
C. Zappia ◽  
T.M. Pellicanò ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Sayfa Bano ◽  
Adil Shafi Ganie ◽  
Saima Sultana ◽  
Suhail Sabir ◽  
Mohammad Zain Khan

Necessity and exploitation of fossil fuel products are implacable in serving the needs of humanity despite being a finite and limited resource. To meet the thrust of energy, biofuels derived from varieties of renewable resources are imperative in fulfilling the demand of renewable fuels on a large scale without creating environmental concerns. Biofuels are inevitably the result of the carbon fixation process which stores chemical energy, ultimately reducing the total amount of carbon dioxide. Different kinds of biofuels like bioethanol, biomethanol, biogas, and biodiesel are derived depending on varieties of feedstock materials. Among these, production of biodiesel augments the progression of clean and renewable fuel. In this review, we have discussed the production of biodiesel derived from various feedstock and using several processes like pyrolysis, direct blending, micro-emulsion, and trans-esterification, with critical discussion focussing on increasing biodiesel production using nanocatalysts. Biodiesel production mainly proceeds through homogenous and heterogeneous catalysis via trans-esterification method. The review further discusses the significance of nanocatalyst in heterogeneous catalysis based trans-esterification for large scale biodiesel production. With the advent of nanotechnology, designing and modification of nanocatalyst gives rise to attractive properties such as increased surface area, high thermal stability, and enhanced catalytic activity. The role of nanocatalysts have been extensively studied and investigated in regard to the increased biodiesel production. Along with the modification of nanocatalysts, we have briefly discussed the physico-chemical properties and the role of the optimization parameters as it plays a pivotal role in enhancing the biodiesel production commercially.


Author(s):  
K. Bello ◽  
F. Airen ◽  
A. O. Akinola ◽  
E. I. Bello

The paper characterized and transesterified castor seed oil. The resulting product was tested as feedstock for biodiesel production. It was carried out at the Department of Mechanical Engineering, the Federal University of Technology, Akure, Ondo State, Nigeria, over a period of eight months. The oil was extracted in a soxhlet extractor with n-hexane as the solvent. The oil obtained was filtered and then characterized. Transesterification was carried out using a laboratory scale biodiesel processor. The fuel and physico-chemical properties of the oil and its biodiesel were determined following ASTM, EN and AOCS methods. The results revealed that all the properties of the biodiesel are within the ASTM limits for biodiesel except the kinematic viscosity. The oil contains 89% ricinoleic acid and has high solubility in methanol due to the hydroxyl group and requires minimum amount of catalyst to give maximum biodiesel yield. The heating value obtained for the oil and its biodiesel were 32 MJ/kg and 38 MJ/kg. The castor seed oil investigated has oil content of 34%, and the properties characterized are all within the limits for biodiesel.  Castor oil has excellent solubility in methanol and hence theoretically an ideal feedstock for biodiesel production.


2021 ◽  
Vol 37 (2) ◽  
pp. 134-143
Author(s):  
M.S Chomini ◽  
V.I Joshua ◽  
A.R John ◽  
M.P Ishaya

This study investigates the physico-chemical and fatty acids composition of crude seed oil extracts of Azadirachta indica . The main objective was to evaluate some biodiesel characteristics of the crude seed oil extract of Azadirachta indica. The procedures of the Association of Official and Analytical Chemist (AOAC) were used for assessment of some physical, biochemical, and fatty acids constituents of the test seed oil extract. The physical properties assayed for indicate that the oil is liquid at room temperature, non-drying, with specific gravity, with flash and melting points of 0.910±0.08 g/cm3, 80±2.10°C and 76±1.60°C respectively. The chemical properties included 66.77±2.55 g/100g (iodine value), 1.465±0.07 (refractive index@ 30°C), 212.96±1.16 mgKOH/g (saponification value), 0.39±0.16 meq/Kg (peroxide value), 4.24±0.12 mgKOH/g (acid value), 2.20±0.12 mm2/s (viscosity value), 56.91±2.19 (cetane number), 39.21±1.11 MJ/kg (calorific value) and 2.13±0.05% w/w (free fatty acids). Fatty acids composition of the crude seed oil of A. indica obtained were linoleic, hexadecanoic, octadecanoic and alpha linolenic acids, with retention time and % composition of 18.2 min and 10.8±0.50%, 22.2 min and 30.01±1.79%, 18.2 min and 59.10±2.22%, and 20.2 min and 0.09±0.02% respectively. The crude seed oil extract clearly presents a potential as a biodiesel substrate for incorporation as a proximate blend in auto-engines. This therefore would necessitate intensive afforestation efforts of the plant species for sustainable utilization. Keywords: Azadirachta indica, Biodiesel, physico-chemical, fatty acids, crude seed oil, extracts


Clean Energy ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 19-31
Author(s):  
Baskar Thangaraj ◽  
Pravin Raj Solomon

Abstract Biodiesel—an impressive alternative fuel with favourable physico-chemical properties having environmental benefits—is prepared from vegetable oil. However, the cost is one of the main hurdles in commercializing it. Its production by conventional transesterification processes needs high ambient temperature and a specialized catalyst. Due to the multifaceted adversities of many of the catalysts, there is active consideration for an electrocatalytic process that does not require elevated temperature. In addition, an electrocatalytic process is carried out in the presence or absence of a catalyst or co-solvent. In this review, various parameters such as electrolysis voltage, stirring rate, electrode type, water content, co-solvent type, reaction temperature, reaction duration, oil-to-methanol molar ratio and concentration of NaCl affecting the electrocatalytic transesterification process are presented.


2018 ◽  
Vol 17 (1) ◽  
pp. 18
Author(s):  
S. N. Rabelo ◽  
L. S. Oliveira ◽  
A. S. França

Biodiesel was successful produced in a microwave irradiation reactor using homogeneous and heterogeneous catalysis. The biodiesel was production by the trasesterification reaction of soybean oil using metanol. Sodium methylate (30% solution in metanol) was used for the homogeneous catalyst and the heterogeneous catalyst was developed using wasted eggshells. The eggshells were calcined and tested pure and doped with potassium hydroxide in 10, 30 and 50% of weight. The power and temperature of the microwave were kept constant in every reaction being 800W and 200º Celsius, respectively. The reaction time was significantly reduced using microwave compared to the conventional process. In only one minute of reaction, the methyl ester (FAME) conversion obtained was 98.9% with the homogeneous catalyst and within 15 minutes, the heterogeneous catalysis accomplished 100%. For heterogeneous catalyst, the best results were acquired when the doped catalyst contained 50% of KOH. The results indicated that the eggshells treated with KOH has a great potential to be used for microwave-assisted transesterification reactions of oils with mild operations conditions: molar ratio oil/alcochol 1:6 and just 5% of catalyst. In addition, the heterogenous catalyst was recovered and reused in other reactions with a relatively satisfying results. The physico-chemical properties of the catalysts were characterized by X-ray diffraction and thermogravimectric analysis.


Author(s):  
H. Gross ◽  
H. Moor

Fracturing under ultrahigh vacuum (UHV, p ≤ 10-9 Torr) produces membrane fracture faces devoid of contamination. Such clean surfaces are a prerequisite foe studies of interactions between condensing molecules is possible and surface forces are unequally distributed, the condensate will accumulate at places with high binding forces; crystallites will arise which may be useful a probes for surface sites with specific physico-chemical properties. Specific “decoration” with crystallites can be achieved nby exposing membrane fracture faces to water vopour. A device was developed which enables the production of pure water vapour and the controlled variation of its partial pressure in an UHV freeze-fracture apparatus (Fig.1a). Under vaccum (≤ 10-3 Torr), small container filled with copper-sulfate-pentahydrate is heated with a heating coil, with the temperature controlled by means of a thermocouple. The water of hydration thereby released enters a storage vessel.


Sign in / Sign up

Export Citation Format

Share Document