scholarly journals Assessment of Physicochemical and Fatty Acids Composition of Crude Seed Oil Extract of Azadirachta indica Adr. Juss. for its potential in Biodiesel Production

2021 ◽  
Vol 37 (2) ◽  
pp. 134-143
Author(s):  
M.S Chomini ◽  
V.I Joshua ◽  
A.R John ◽  
M.P Ishaya

This study investigates the physico-chemical and fatty acids composition of crude seed oil extracts of Azadirachta indica . The main objective was to evaluate some biodiesel characteristics of the crude seed oil extract of Azadirachta indica. The procedures of the Association of Official and Analytical Chemist (AOAC) were used for assessment of some physical, biochemical, and fatty acids constituents of the test seed oil extract. The physical properties assayed for indicate that the oil is liquid at room temperature, non-drying, with specific gravity, with flash and melting points of 0.910±0.08 g/cm3, 80±2.10°C and 76±1.60°C respectively. The chemical properties included 66.77±2.55 g/100g (iodine value), 1.465±0.07 (refractive index@ 30°C), 212.96±1.16 mgKOH/g (saponification value), 0.39±0.16 meq/Kg (peroxide value), 4.24±0.12 mgKOH/g (acid value), 2.20±0.12 mm2/s (viscosity value), 56.91±2.19 (cetane number), 39.21±1.11 MJ/kg (calorific value) and 2.13±0.05% w/w (free fatty acids). Fatty acids composition of the crude seed oil of A. indica obtained were linoleic, hexadecanoic, octadecanoic and alpha linolenic acids, with retention time and % composition of 18.2 min and 10.8±0.50%, 22.2 min and 30.01±1.79%, 18.2 min and 59.10±2.22%, and 20.2 min and 0.09±0.02% respectively. The crude seed oil extract clearly presents a potential as a biodiesel substrate for incorporation as a proximate blend in auto-engines. This therefore would necessitate intensive afforestation efforts of the plant species for sustainable utilization. Keywords: Azadirachta indica, Biodiesel, physico-chemical, fatty acids, crude seed oil, extracts

2020 ◽  
Vol 24 (8) ◽  
pp. 1467-1473
Author(s):  
M.S. Chomini ◽  
A.J. Daspan ◽  
C. Kambai ◽  
A.E. Chomini ◽  
E.A. Bassey ◽  
...  

Study on assessmentof biodiesel fuel potentials of seed crude oil extracts of Balanites aegyptiaaca (L.) Del was carriedout. Standard methods of the Association of Official and Analytical Chemist (AOAC) were adopted to evaluate the proximate, physico-chemical properties and fatty acid  compositions of crude seed oil extracts of the test plant. The proximate constituents of the crude seed oil extract gave crude protein (22.09%), crude fat (56.75%), moisturecontent (1.35%), ash (4.70%), crudefiber (12.75%) and carbohydrate (2.36%). The crude oil physicochemical properties included saponification value(216.439mgKOH/g), peroxide value(4.84meq/kg), acid value(2.18mgKOH/g), iodine value(77.08g/100g), viscosity  value(150.3@30°C) and cetane number(54.08), refractive index(1.487 @30°C), relative density (0.949g/cm3) while calorific value was 39.03(MJ/kg). The fatty acids composition of crude kernel oil extract of B. aegyptiaca indicated the presence of four (4) fatty acids, with relative percentage abundance (RPA) in the order of 67.17% (9,12-Octadecanoic acid (C19 H3402)) > 16.22% (Pentadecanoic acid (C17H3402)) > 11.8kg% (Heptacosanoic acid (C28H5602)) > 4.72% (Oleic acid(C18H3402)). These properties conferred relative prospects on the crude oil of the test plant as a suitable  potential biodiesel substrate and consequently, large scale aforestation efforts be renewed, to guarantee ready availability of the raw materials. Keywords: Balanites aegyptiaca, Biodiesel, proximate, physicochemical, crude seed oil extracts


1970 ◽  
Vol 24 (2) ◽  
pp. 215-220 ◽  
Author(s):  
Mohammad Mizanur Rahman ◽  
Sudhangshu Kumar Roy ◽  
Mohammad Shahjahan

Seven fatty acids were isolated from pet-ether extract of Nyctanthes arbor-tristis Linn (Seuli) leaves. The relative percentages of the major fatty acids were identified by GLC as palmitic acid (23.88%), linoleic acid (8.95%), stearic acid (47.56%) and oleic acid (5.07%). The yield of the leaves fat was 2.10%. Acid value of seed oil was found to be 76.27 and suggests that this oil is inedible. Physico-chemical characteristic, such as acid value, iodine value, moisture, ash, lignin, crude fibre, fat, protein and carbohydrate of the Seuli leaf were also determined. Keywords: Seuli leaves; Nyctanthes arbor-tristis Linn; fatty acids composition. DOI: http://dx.doi.org/10.3329/jbcs.v24i2.9711 Journal of Bangladesh Chemical Society, Vol. 24(2), 215-220, 2011


2021 ◽  
Vol 36 (1) ◽  
pp. 53-66
Author(s):  
C. Esonye ◽  
O. D Onukwuli ◽  
S. O. Momoh

Currently the major challenge of biodiesel application as a replacement to petrodiesel is its industrial production sustainability.Consequently, the successful scale-up of laboratory results in transesterification requires so much information obtained through chemical kinetics.This paper presents the kinetics and thermodynamic study of alkali-homogeneous irreversible methanolysis of seed oil derived from African pear. The transesterification process was carried out from 0-100 minutes at temperature range of 55-65°C. The reaction mixture compositions were ascertained using gas chromatography- flame ionization detector (GC-FID) technique. Rate constants of the triglyceride (Tg), diglycerides (Dg) and monoglycerides(Mg) hydrolysis were in the range of 0.0140- 0.07810 wt%/min and increased with increase in temperature. The rate of reaction was found to increase with increase in temperature. Activation energies were found to be 6.14, 20.01 and 28.5kcal/mol at 55, 60 and 65oC respectively. Tg hydrolysis to Dg was observed asthe rate determining step while the reaction agreed with second order principles. A biodiesel yield of 93.02% was obtained with cloud point of 10°C , flash point of 125°C , pour point of 4°C , calorific value of 34.4MJ/kg, and cetane number of 54.90 which satisfy EN14214 and ASTM D 6751 standards. Results presented in this report would serve as idealized conditions for industrial scale up of biodiesel production from African pear seed oil. Keywords:Kinetics; methanolysis; rate constants; activation energy; African pear seed oil; biodiesel


1970 ◽  
Vol 46 (4) ◽  
pp. 561-564 ◽  
Author(s):  
Gm Ahmed ◽  
MS Rahman ◽  
MR Zaman ◽  
MA Hossain ◽  
MM Uddin ◽  
...  

The physico-chemical properties of the extracted oil were studied by the conventional methods. It was observed that Siyal Kanta grown under the soil and climatic condition of Bangladesh contains about 35% of pale yellow coloured oil. The total lipids were fractionated into three major lipid groups, neutral lipids, glycolipid and phospholipids by silicic acid column chromatography. Among the lipids, the neutral lipids were varied from 92.1-92.3%, glycolipid 5.5-5.8% and phospholipid 1.5-1.7% of the total oil of the lipid applied. The oil was also fractionated into mono-, di- and triglyceride by silicic acid column chromatography. The triglycerides were varied from 90.1-90.3%, diglycerides from 2.3-2.8% and monoglycerides from 1.5-1.8%. The saturated and unsaturated fatty acids present in the oil were separated and found to be 14.2-14.5% and 84.2-84.8% respectively depending on the areas in which the plant grows. The fatty acid compositions of the oil were analyzed by Gas Liquid Chromatography (GLC). The major fatty acids found in the oil were oleic acid (23%), linoleic acid (58%), palmetic acid (7%) and ricinoleic acid (10%). Key words: Siyal kanta seed oil; Glyceride; Lipid; Fatty acid. DOI: http://dx.doi.org/10.3329/bjsir.v46i4.9607 BJSIR 2011; 46(4): 561-564


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 791 ◽  
Author(s):  
Inam Ullah Khan ◽  
Zhenhua Yan ◽  
Jun Chen

Biodiesel is a clean and renewable fuel, which is considered as the best alternative to diesel fuel, but the feedstock contributes more than 70% of the cost. The most important constituent essential for biodiesel development is to explore cheap feedstock with high oil content. In this work, we found novel non-edible plant seeds of Koelreuteria paniculata (KP) with high oil contents of 28–30 wt.% and low free fatty acid contents (0.91%), which can serve as a promising feedstock for biodiesel production. KP seed oil can convert into biodiesel/fatty acid methyl esters (FAMEs) by base-catalyzed transesterification with the highest biodiesel production of 95.2% after an optimization process. We obtained the optimal transesterification conditions, i.e., oil/methanol ratio (6:1), catalyst concentration (0.32), reaction temperature (65 °C), stirring rate (700 rpm), and reaction time (80 min). The physico-chemical properties and composition of the FAME were investigated and compared with mineral diesel. The synthesized esters were confirmed and characterized by the application of NMR (1H and 13C), FTIR, and GC-MS. The biofuel produced from KP seed oil satisfies the conditions verbalized by ASTM D6751 and EN14214 standards. Accordingly, KP source oil can be presented as a novel raw material for biofuel fabrication.


2015 ◽  
pp. 237-244 ◽  
Author(s):  
A.M. Giuffrè ◽  
V. Sicari ◽  
M. Capocasale ◽  
C. Zappia ◽  
T.M. Pellicanò ◽  
...  

1970 ◽  
Vol 15 ◽  
pp. 117-126 ◽  
Author(s):  
Md Tamzid Hossain Molla ◽  
MT Alam ◽  
M A-U Islam

Oil was extracted from Terminalia belerica Roxb. seed kernel by solvent extraction process. The whole seed contained 12.28 % oil on dry basis. The physico-chemical properties of the oil were determined. Moisture, ash and crude fibre contents of the seed kernel were found to be 8. 43, 2.54, and 8.78% respectively. The refractive index, co-efficient of viscosity, specific gravity, and energy of activation of the oil were found to be 1.28, 403.6 millipoise at 30°C, 0.93 and 6.97 k.cal/mole respectively. The oil was found to be non-drying. Iodine value, acid value, peroxide value, saponification value, saponification equivalent, ester value, unsaponifiable matter, acetyl value, Reichert-Meissel value, Polenske value, free fatty acids as oleic acid and cholesterol content of the oil were recorded as 107, 3.69, 3.14, 189.24, 296.44, 185.55, 1.24%, 3.78, 0.719, 0.945, 0.87% and 26.59 mg per 100 g oil, respectively. The oil was qualitative and quantitative analysed for fatty acid composition by TLC and GLC. The results showed that the fatty acids of the oil had chain length between C14 to C22. The oil contained 17.70% myristic acid, 21.6% palmitic acid, 45.67% oleic acid and 14.93% stearic acid. The whole kernel was analyzed for some nutrients and minerals. The kernel contained 22.57 and 8.38% total lipid and protein respectively. It also contained 0.19mg, 0.45mg, 0.79g and 1.1mg of vitamin B1, B2, C and A respectively per 100g of kernel. Ca, Mg, K, Na, P, Fe, Mn, Zn and Cu were found to be 0.3, 0.02, 0.2, 0.2, 0.01%; 23, 1, 12 and 12 ppm respectively in kernel and 0.12, 0.05, 1.15, 0.18, 0.45%; 204, 4, 54 and 50 ppm respectively in oil. Key words: T. belerica seed oil and kernel, physico-chemical behaviour, micronutrients, fatty acid profile, GLC.   doi: 10.3329/jbs.v15i0.2211   J. bio-sci. 15: 117-126, 2007


Author(s):  
J. Fernandez ◽  
V. Hariram ◽  
S. Seralathan ◽  
S.A. Harikrishnan ◽  
T. Micha Premkumar

Biodiesel synthesis from the pongamia oil seed and its characterization is elaborated in this paper. A double stage transesterification i.e. acid catalysed transesterification and base catalysed esterification are adopted to reduce the free fatty acids content and conversion of triglycerides into methyl esters. In this process, H2SO4, NaOH and methanol are used at the methanol/oil molar ratio of 7:1. By this process, 95% of pongamia biodiesel is obtained. The physiochemical properties like calorific value, Cetane number, density, kinematic viscosity, flash point, fire point etc. are analysed and it is found to be within the ASTM standards. GC-MS analysis indicated the existence of 14 prominent fatty acids with oleic acid as the major constituent. 13C and 1H NMR results supported the GC-MS data and it also confirmed the conversion efficiency of converting the vegetable oil into PBD as 87.23%. The shifting and appearance of major peaks in the FT-IR spectrum confirmed the formation of FAMEs from the triglycerides.


2020 ◽  
Vol 7 (2) ◽  
pp. 41 ◽  
Author(s):  
Djomdi ◽  
M. T. Leku ◽  
D. Djoulde ◽  
C. Delattre ◽  
P. Michaud

This article is focused on the production of biodiesel from the waste cotton seed oil (WCSO), after purification, as an alternative to fossil fuels. Waste oil was collected from Sodecoton, a factory producing cotton seed oil in the Far North Cameroon. The WCSO was subjected to purification using activated coal, followed by transesterification under basic conditions (potassium hydroxide (KOH)), using methanol and ethanol. Some physico–chemical properties of biodiesel, such as absorbance of waste and purified oil, density, viscosity, water content, acid value, and its energy content were determined. The result of treating the WCSO with activated coal indicated that purification efficiency of activated coal increased with the contact time and the mass of the absorbent. Absorbance results directly proved that activated coal removed unwanted components. In the same way, activated coal concentration and exposure time influenced the level of free fatty acids of WCSO. The yield of methyl ester was 97%, while that of ethyl ester was 98%. The specific gravity at 25 °C was 0.945 ± 0.0601. An evaluation of the lower calorific value (PCI) was done in order to study the energy content of biodiesel. This was found to be a value of 37.02 ± 3.05 MJ/kg for methyl ester and 36.92 ± 7.20 MJ/kg for ethyl ester. WCSO constitutes feedstock for high volume, good quality, and sustainable production of biodiesel, as well as a realistic means of eliminating the pollution resulting from the indiscriminate disposal of waste oils from both household and industrial users.


2017 ◽  
Vol 29 (9) ◽  
pp. 2011-2015 ◽  
Author(s):  
Nabi Shariatifar ◽  
Issa Mohammad Pourfard ◽  
Gholamreza Jahed Khaniki ◽  
Ramin Nabizadeh ◽  
Arash Akbarzadeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document