scholarly journals The Phytocomplex from Fucus vesiculosus and Ascophyllum nodosum Controls Postprandial Plasma Glucose Levels: An In Vitro and In Vivo Study in a Mouse Model of NASH

Marine Drugs ◽  
2017 ◽  
Vol 15 (2) ◽  
pp. 41 ◽  
Author(s):  
Daniela Gabbia ◽  
Stefano Dall’Acqua ◽  
Iole Di Gangi ◽  
Sara Bogialli ◽  
Valentina Caputi ◽  
...  
Marine Drugs ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 62 ◽  
Author(s):  
Daniela Gabbia ◽  
Miriam Saponaro ◽  
Samantha Sarcognato ◽  
Maria Guido ◽  
Nicola Ferri ◽  
...  

The Asian coastal communities have used the brown seaweeds Fucus vesiculosus and Ascophyllum nodosum since ancient times. Recently, some in vitro and in vivo studies have demonstrated their abilities in reducing risk factors for metabolic syndrome. Here, we analyzed the protective effect of a phytocomplex extracted from these seaweeds on the deposition of fat in the liver after the administration of a high-fat diet (HFD) to rats for five weeks. The administration of F. vesiculosus and A. nodosum led to significant reductions in microvescicular steatosis and plasma biochemical and lipid parameters, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total and conjugated bilirubin, and triglycerides. Furthermore, the postprandial glycemic peak was delayed and significantly reduced (p < 0.01) by the algal extract administration. In conclusion, this extract is effective in reducing microvescicular steatosis and improving glycemic control, thereby lowering the risk of nonalcoholic fatty liver disease, obesity, and diabetes, diseases related to the consumption of fat and sugar-enriched diets.


Blood ◽  
2006 ◽  
Vol 107 (2) ◽  
pp. 655-660 ◽  
Author(s):  
Eline Menu ◽  
Helena Jernberg-Wiklund ◽  
Thomas Stromberg ◽  
Hendrik De Raeve ◽  
Leonard Girnita ◽  
...  

AbstractInsulin-like growth factor 1 (IGF-1) plays a pleiotropic role in multiple myeloma (MM), that is, in survival, proliferation, chemotaxis, and angiogenesis. Strategies targeting the IGF-1 receptor (IGF-1R) may therefore be important to develop efficient anti-MM agents. In this work we investigated the effect of an IGF-1R tyrosine kinase (IGF-1RTK) inhibitor (picropodophyllin or PPP) in the 5T33MM mouse model. In vitro data showed that PPP reduced IGF-1R autophosphorylation and downstream ERK activation, leading to inhibition of IGF-1–stimulated proliferation and vascular endothelial growth factor (VEGF) secretion of MM cells. In an in vivo study, PPP reduced the bone marrow tumor burden and serum paraprotein in 5T33MM mice by 77% and 90%, respectively, compared to vehicle-treated animals. Angiogenesis was assessed by quantifying the microvessel density on CD31-stained paraffin sections and this was reduced by 60% in the PPP-treated group. In a separate survival experiment, Kaplan-Meier analysis demonstrated a significant increase in survival in PPP-treated 5T33MM animals compared to the vehicle controls (28 versus 18 days). These data suggest that the IGF-1RTK inhibitor PPP possesses a marked antitumor activity and strongly points to the possibility of using IGF-1R inhibitors in the treatment of MM.


2012 ◽  
Vol 26 (11) ◽  
pp. 1907-1916 ◽  
Author(s):  
Guangrui Lai ◽  
Jingjing Wu ◽  
Xiaoliang Liu ◽  
Yanyan Zhao

Abstract We previously generated cytochrome P450 4F2 (CYP4F2) transgenic mice and showed high 20-hydroxyeicosatetraenoic acid (20-HETE) production, which resulted in an elevation of blood pressure. However, it was unclear whether 20-HETE affected glucose metabolism. We measured fasting plasma glucose, insulin, hepatic CYP4F2 expression, and 20-HETE production by hepatic microsomes, and hepatic 20-HETE levels in transgenic mice. We also assessed glycogen phosphorylase (GP) activity and the cAMP/protein kinase A (PKA)-phosphorylase kinase (PhK)-GP pathway, as well as expressions of insulin receptor substrate 1 and glucose transporters in vivo and in vitro. The transgenic mice had overexpressed hepatic CYP4F2, high hepatic 20-HETE and fasting plasma glucose levels but normal insulin level. The GP activity was increased and the cAMP/PKA-PhK-GP pathway was activated in the transgenic mice compared with wild-type mice. Moreover, these alterations were eliminated with the addition of N-hydroxy-N′-(4-butyl-2 methylphenyl) formamidine, which is a selective 20-HETE inhibitor. The results were further validated in Bel7402 cells. In addition, the transgenic mice had functional insulin signaling, and 20-HETE had no effect on insulin signaling in Bel7402 cells, excluding that the observed hyperglycemia in CYP4F2 transgenic mice resulted from insulin dysfunction, because the target tissues were sensitive to insulin. Our study suggested that 20-HETE can induce hyperglycemia, at least in part, through the cAMP/PKA-PhK-GP pathway but not through the insulin-signaling pathway.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 772-P
Author(s):  
MARIKO HIGA ◽  
AYANA HASHIMOTO ◽  
MOE HAYASAKA ◽  
MAI HIJIKATA ◽  
AYAMI UEDA ◽  
...  

2020 ◽  
Vol 21 (15) ◽  
pp. 1688-1698
Author(s):  
Germeen N.S. Girgis

Purpose: The work was performed to investigate the feasibility of preparing ocular inserts loaded with Poly-ε-Caprolactone (PCL) nanoparticles as a sustained ocular delivery system. Methods: First, Atorvastatin Calcium-Poly-ε-Caprolactone (ATC-PCL) nanoparticles were prepared and characterized. Then, the optimized nanoparticles were loaded within inserts formulated with Methylcellulose (MC) and Polyvinyl Alcohol (PVA) by a solvent casting technique and evaluated physically, for in-vitro drug release profile. Finally, an in-vivo study was performed on the selected formulation to prove non-irritability and sustained ocular anti-inflammatory efficacy compared with free drug-loaded ocuserts. Results: The results revealed (ATC-PCL) nanoparticles prepared with 0.5% pluronic F127 were optimized with 181.72±3.6 nm particle size, 0.12±0.02 (PDI) analysis, -27.4± 0.69 mV zeta potential and 62.41%±4.7% entrapment efficiency. Nanoparticles loaded ocuserts manifested compatibility between drug and formulation polymers. Moreover, formulations complied with average weight 0.055±0.002 to 0.143±0.023 mg, and accepted pH. ATC-PCL nanoparticles loaded inserts prepared by 5% MC showed more sustained, prolonged in-vitro release over 24h. In-vivo study emphasized non-irritability, ocular anti-inflammatory effectiveness represented by smaller lid closure scores, and statistically significant lowering in PMN count after 3h. Conclusion: These findings proposed a possibly simple, new and affordable price technique to prepare promising (ATC-PCL) nanoparticles loaded inserts to achieve sustained release with prolonged antiinflammatory efficacy.


Sign in / Sign up

Export Citation Format

Share Document