Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model

Blood ◽  
2006 ◽  
Vol 107 (2) ◽  
pp. 655-660 ◽  
Author(s):  
Eline Menu ◽  
Helena Jernberg-Wiklund ◽  
Thomas Stromberg ◽  
Hendrik De Raeve ◽  
Leonard Girnita ◽  
...  

AbstractInsulin-like growth factor 1 (IGF-1) plays a pleiotropic role in multiple myeloma (MM), that is, in survival, proliferation, chemotaxis, and angiogenesis. Strategies targeting the IGF-1 receptor (IGF-1R) may therefore be important to develop efficient anti-MM agents. In this work we investigated the effect of an IGF-1R tyrosine kinase (IGF-1RTK) inhibitor (picropodophyllin or PPP) in the 5T33MM mouse model. In vitro data showed that PPP reduced IGF-1R autophosphorylation and downstream ERK activation, leading to inhibition of IGF-1–stimulated proliferation and vascular endothelial growth factor (VEGF) secretion of MM cells. In an in vivo study, PPP reduced the bone marrow tumor burden and serum paraprotein in 5T33MM mice by 77% and 90%, respectively, compared to vehicle-treated animals. Angiogenesis was assessed by quantifying the microvessel density on CD31-stained paraffin sections and this was reduced by 60% in the PPP-treated group. In a separate survival experiment, Kaplan-Meier analysis demonstrated a significant increase in survival in PPP-treated 5T33MM animals compared to the vehicle controls (28 versus 18 days). These data suggest that the IGF-1RTK inhibitor PPP possesses a marked antitumor activity and strongly points to the possibility of using IGF-1R inhibitors in the treatment of MM.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuejie Gao ◽  
Bo Li ◽  
Anqi Ye ◽  
Houcai Wang ◽  
Yongsheng Xie ◽  
...  

Abstract Background Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects. In the current study, we intend to investigate the therapeutic effects of DCZ0805 in MM cells and elucidate the molecular mechanism underlying its anti-myeloma activity. Methods We used the Cell Counting Kit-8 assay, immunofluorescence staining, cell cycle assessment, apoptosis assay, western blot analysis, dual-luciferase reporter assay and a tumor xenograft mouse model to investigate the effect of DCZ0805 treatment both in vivo and in vitro. Results The results showed that DCZ0805 treatment arrested the cell at the G0/G1 phase and suppressed MM cells survival by inducing apoptosis via extrinsic and intrinsic pathways. DCZ0805 suppressed the NF-κB signaling pathway activation, which may have contributed to the inhibition of cell proliferation. DCZ0805 treatment remarkably reduced the tumor burden in the immunocompromised xenograft mouse model, with no obvious toxicity observed. Conclusion The findings of this study indicate that DCZ0805 can serve as a novel therapeutic agent for the treatment of MM.


2018 ◽  
Vol 24 (2) ◽  
pp. 267-275 ◽  
Author(s):  
Elena Marinelli Busilacchi ◽  
Andrea Costantini ◽  
Nadia Viola ◽  
Benedetta Costantini ◽  
Jacopo Olivieri ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Amritha Vijayan ◽  
Sabareeswaran A. ◽  
G. S. Vinod Kumar

AbstractApplication of growth factors at wound site has improved the efficiency and quality of healing. Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) induce proliferation of various cells in wound healing. Delivery of growth factor from controlled release systems protect it from degradation and also result in sustained delivery of it at the site of injury. The goal of the study was to develop a Polyethylene glycol (PEG) cross-linked cotton-like chitosan scaffold (CS-PEG-H) by freeze-drying method and chemically conjugate heparin to the scaffold to which the growth factors can be electrostatically bound and evaluate its wound healing properties in vitro and in vivo. The growth factor containing scaffolds induced increased proliferation of HaCaT cells, increased neovascularization and collagen formation seen by H and E and Masson’s trichrome staining. Immunohistochemistry was performed using the Ki67 marker which increased proliferation of cells in growth factor containing scaffold treated group. Frequent dressing changes are a major deterrent to proper wound healing. Our system was found to release both VEGF and bFGF in a continuous manner and attained stability after 7 days. Thus our system can maintain therapeutic levels of growth factor at the wound bed thereby avoiding the need for daily applications and frequent dressing changes. Thus, it can be a promising candidate for wound healing.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 641-641 ◽  
Author(s):  
Suzanne Trudel ◽  
Zhi Hua Li ◽  
Ellen Wei ◽  
Marion Wiesmann ◽  
Katherine Rendahl ◽  
...  

Abstract The t(4;14) translocation that occurs uniquely in a subset (15%) of multiple myeloma (MM) patients results in the ectopic expression of the receptor tyrosine kinase, Fibroblast Growth Factor Receptor3 (FGFR3). Wild-type FGFR3 induces proliferative signals in myeloma cells and appears to be weakly transforming in a hematopoeitic mouse model. The subsequent acquisition of FGFR3 activating mutations in some MM is associated with disease progression and is strongly transforming in several experimental models. The clinical impact of t(4;14) translocations has been demonstrated in several retrospective studies each reporting a marked reduction in overall survival. We have previously shown that inhibition of activated FGFR3 causes morphologic differentiation followed by apoptosis of FGFR3 expressing MM cell lines, validating activated FGFR3 as a therapeutic target in t(4;14) MM and encouraging the clinical development of FGFR3 inhibitors for the treatment of these poor-prognosis patients. CHIR258 is a small molecule kinase inhibitor that targets Class III–V RTKs and inhibits FGFR3 with an IC50 of 5 nM in an in vitro kinase assay. Potent anti-tumor and anti-angiogenic activity has been demonstrated in vitro and in vivo. We employed the IL-6 dependent cell line, B9 that has been engineered to express wild-type FGFR3 or active mutants of FGFR3 (Y373C, K650E, G384D and 807C), to screen CHIR258 for activity against FGFR3. CHIR258 differentially inhibited FGF-mediated growth of B9 expressing wild-type and mutant receptors found in MM, with an IC50 of 25 nM and 80 nM respectively as determined by MTT proliferation assay. Growth of these cells could be rescued by IL-6 demonstrating selectivity of CHIR258 for FGFR3. We then confirmed the activity of CHIR258 against FGFR3 expressing myeloma cells. CHIR258 inhibited the viability of FGFR3 expressing KMS11 (Y373C), KMS18 (G384D) and OPM-2 (K650E) cell lines with an IC50 of 100 nM, 250 nM and 80 nM, respectively. Importantly, inhibition with CHIR258 was still observed in the presence of IL-6, a potent growth factors for MM cells. U266 cells, which lack FGFR3 expression, displayed minimal growth inhibition demonstrating that at effective concentrations, CHIR258 exhibits minimal nonspecific cytotoxicity on MM cells. Further characterization of this finding demonstrated that inhibition of cell growth corresponded to G0/G1 cell cycle arrest and dose-dependent inhibition of downstream ERK phosphorylation. In responsive cell lines, CHIR258 induced apoptosis via caspase 3. In vitro combination analysis of CHIR258 and dexamethasone applied simultaneously to KMS11 cells indicated a synergistic interaction. In vivo studies demonstrated that CHIR258 induced tumor regression and inhibited growth of FGFR3 tumors in a plasmacytoma xenograft mouse model. Finally, CHIR258 produced cytotoxic responses in 4/5 primary myeloma samples derived from patients harboring a t(4;14) translocation. These data indicate that the small molecule inhibitor, CHIR258 potently inhibits FGFR3 and has activity against human MM cells setting the stage for a Phase I clinical trial of this compound in t(4;14) myeloma.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
E Berghausen ◽  
M Krause ◽  
L Feik ◽  
M Vantler ◽  
S Baldus ◽  
...  

Abstract Rationale Pulmonary arterial hypertension (PAH) is a vascular disease characterized by chronic increases in pulmonary vascular resistance (PVR), pulmonary arterial pressure (PAP), and right ventricular (RV) hypertrophy. Increased activation of receptor tyrosine kinase (RTK) -mediated signaling pathways leads to increased proliferation and migration of pulmonary smooth vascular muscle cells (PASMCs) which promote vascular remodeling processes. We identified the catalytic subunit p110alpha of phosphatidylinositol-3-kinase as a key enzyme for these processes and showed that both genetic ablation of p110alpha in SMCs and pharmacological inhibition can prevent experimental PH. Here, the effects of the orally bioavailable p110alpha selective PI3K inhibitor BYL719 on the RTK-mediated proliferation and chemotaxis of PASMCs, as well as the effects in the hypoxia-induced mouse and in the Sugen / hypoxia (SuHx) -induced rat model of PH were investigated. Methods Human and murine PASMCs were pretreated with different concentrations of BYL719 and stimulated with a mixture of growth factors (PDGF [30ng/ml], EGF [0,5ng/ml], bFGF [2ng/ml], insulin [0,5ng/ml], and FBS [5%]). Proliferation was investigated using a BrdU incorporation ELISA assay (Roche). Chemotaxis was quantified using modified Boyden chambers. Male BL/6 mice were subjected to hypoxia (10% O2) for 21 days. Treatment with BYL719 (or vehicle) was carried out via daily gavage of 50mg/kg bodyweight. In addition, a therapeutic approach was investigated using male Sprague Dawley rats in the SuHx model, which were treated with BYL719 (20 mg / kg body weight) or vehicle for 2 weeks after a three-week hypoxia phase. The RV pressure (RVSP) was measured using a Millar® or liquid-filled catheter. The RV hypertrophy is shown as the quotient of the weights of the RV to the LV + septum (RV / (LV + S)). Results Growth factor-induced proliferation and chemotaxis of the PASMCs were significantly and concentration-dependently inhibited by BYL719. The exposure to hypoxia led to an increase of the RVSP (24.5±0.95 to 35.2±1.28 mmHg) and the development of right ventricular hypertrophy (RV / LV + S 0.24±0.01 to 0.37±0.073), which was significantly reduced in the BYL719 treated group (RVSP 31.4±0.53 mmHg; RV / LV + S 0.31±0.01) (p<0.05). In addition, SuHx led to a robust increase of the RVSP (129.2±5.4 mmHg) and pronounced RV hypertrophy (RV / (LV + S): 0.86±0.04), which were significantly reduced by the therapeutic BYL719 treatment (102.0±6.1 mmHg or 0.64±0.03). Conclusion These results show that inhibition of p110alpha using the BYL719 reduced growth factor-mediated pathological processes in PASMCs in vitro, as well as hypoxia-induced (mouse) and already established SuHx-induced PH (rat). Thus, the inhibition of p110a using BYL719 represents a promising approach for the treatment of PAH. FUNDunding Acknowledgement Type of funding sources: None.


2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 323-323
Author(s):  
Khac Cuong Bui ◽  
Mai Ly Thi Nguyen ◽  
Samarpita Barat ◽  
Xi Chen ◽  
Vikas Bhuria ◽  
...  

323 Background: Adiponectin is the key adipokine, which plays an important role in health and disease such as obesity, diabetes, and cancer. Adiponectin is reduced in different tumor types, especially in obesity-related cancer, and recent studies showed that Adiponectin had a potential anti-cancer effect. Obesity is a risk factor for various tumor diseases including cholangiocarcinoma (CC), the second most common primary hepatic cancer. The aim of this study is to investigate for the first time the anti-cancer effect of AdipoR agonist in CC cell lines and a CC engineered mouse model. Methods: Human CC cell lines (TFK-1 and SZ-1) and CC engineered mice (Alb-Cre/KRASG12D/p53L/L) were used to investigate the anti-cancer effects of an AdipoR agonist (2-(4-Benzoylphenoxy)-N-[1-(phenylmethyl)-4-piperidinyl]-acetamide). Cell proliferation, migration, invasion, colony formation, apoptosis assay were applied to evaluate the effect of AdipoR agonist in vitro. In addition, important cancer signalling pathways and targets were analysed by Western Blot. Mice (n = 12) were treated with AdipoR or verhicle and tumor burden and survival were monitored. Results: AdipoR agonist suppressed proliferation, migration, invasion, colony formation and apoptosis in CC cells. AdipoR agonist regulated the expression of different proteins such as EMT markers, pAMPK, pSTAT3, and PARP, which have pivotal functions in cholangiocarcinogenesis. AdipoR agonist also prolonged survival time in a CC engineered mouse model. Conclusions: Our data revealed that AdipoR agonist inhibited successfully cell proliferation, migration, invasion, colony formation and apoptosis in vitro, and prolonged mice survival in vivo through regulation of crucial signaling pathways in cholangiocarcinogenesis. These results suggested that AdipoR agonist might become a new potential candidate for CC treatment in the future.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 640-640
Author(s):  
Karin Vanderkerken ◽  
Eline Menu ◽  
Thomas Stromberg ◽  
Hendrik De Raeve ◽  
Kewal Asosingh ◽  
...  

Abstract Multiple myeloma (MM) represents a B-cell malignancy, characterized by monoclonal proliferation of plasma cells in the bone marrow (BM) and is associated with osteolysis and angiogenesis. Insulin-like growth factor-1 (IGF-1), produced by the BM stromal cells, has been described as an important factor in the survival, proliferation and migration of MM cells. The latter process is involved in the homing of the MM cells to the BM. IGF-1 also induces VEGF secretion by the MM cells, thus stimulating angiogenesis in the BM. As IGF-1 is a pleiotropic factor in MM, therapeutic strategies targeting the IGF-1R may be effective as anti-tumor treatments. In this work we investigated the effect of an IGF-1 receptor tyrosine kinase inhibitor (picropodophyllin or PPP1) in the murine, syngeneic 5T33MM model of multiple myeloma. This mouse model is representative for the human disease and can combine in vitro and in vivo studies. We first investigated the effects of PPP on the MM cells in vitro. We and others have previously demonstrated that IGF-1 induced ERK activation, involved in VEGF secretion and proliferation. When the 5T33MM cells were preincubated with 1microM PPP, Western blot analysis demonstrated the blocking of this activation. Furthermore, when the 5T33MM cells were preincubated with PPP for 30 min, IGF-1 induced VEGF secretion and proliferation of the 5T33MM cells were completely blocked. Next, we used the tyrosine kinase inhibitor PPP in vivo. 5T33MM cells were injected intravenously in C57BLKaLwRij mice and the development of the disease was monitored by measuring the serum paraprotein concentration. Mice were either treated with a low (17mM, IP, twice a day) or a high dose of PPP (50mM, IP, twice a day) or with the vehicle (DMSO/oil 9/1) from the day of injection with 5T33MM onward. At week 3, vehicle controls showed signs of morbidity and were sacrificed. The presence of tumor was measured by assessing serum paraprotein concentrations and determining the proportion of idiotype positive cells in the BM by flow cytometry. Angiogenesis was assessed by measuring the microvessel density on CD31 stained paraffin sections. The tumor burden in the bone marrow in the PPP treated mice was 77% lower than in vehicle treated animals (p< 0,0001) and the serum paraprotein concentration was 90% lower (p< 0,0001). The microvessel density in the BM of the PPP treated group was reduced by 60% (p< 0,02). In a separate survival experiment the mice were either treated with the vehicle or with the high dose (50mM) of PPP, from the time of tumor injection. Kaplan-Meier analysis demonstrated a significant increase in survival after treatment with PPP when compared with vehicle (28 vs. 18 days, p<0,001). These data demonstrate that the IGF-1RTK inhibitor PPP possesses strong anti-tumor activity, as demonstrated both in vitro and in vivo in a syngeneic model of multiple myeloma, and may therefore be an effective therapeutic candidate for MM treatment.


Sign in / Sign up

Export Citation Format

Share Document