scholarly journals Cortical Bone Trajectory Instrumentation with Vertebroplasty for Osteoporotic Thoracolumbar Compression Fracture

Medicina ◽  
2020 ◽  
Vol 56 (2) ◽  
pp. 82
Author(s):  
Wei-Lin Hsu ◽  
Yu-Hsiang Lin ◽  
Hao-Yu Chuang ◽  
Han-Chung Lee ◽  
Der-Cherng Chen ◽  
...  

Background: Osteoporotic spinal fractures commonly occur in elderly patients with low bone mineral density. In these cases, percutaneous vertebroplasty or percutaneous kyphoplasty can provide significant pain relief and improve mobility. However, studies have reported both the recurrence of vertebral compression fractures at the index level after vertebroplasty and the development of new vertebral fractures at the adjacent level that occur without any additional trauma. Pedicle screw fixation combined with percutaneous vertebroplasty has been proposed as an effective procedure for addressing osteoporotic thoracolumbar fractures. However, in osteoporotic populations, pedicle screws can loosen, pullout, or migrate. Currently, the efficacy of cortical bone trajectory screw fixation for osteoporotic fractures remains unclear. Thus, we assessed the effects of using cortical bone trajectory instrumentation with vertebroplasty on patient outcomes. Method: We retrospectively reviewed data from 12 consecutively sampled osteoporotic thoracolumbar fracture patients who underwent cortical bone trajectory instrumentation with vertebroplasty. Patients were enrolled beginning in October 2015 and were followed for >24 months. Result: The average age was 74 years, and the average dual-energy x-ray absorptiometry T-score was −3.6. The average visual analog scale pain scores improved from 8 to 2.5 after surgery. The average blood loss was 36.25 mL. All patients regained ambulation and experienced reduced pain post-surgery. No recurrent fractures or instrument failures were recorded during follow-up. Conclusions: Our findings suggest that cortical bone trajectory instrumentation combined with percutaneous vertebroplasty may be a good option for treating osteoporotic thoracolumbar fractures, as it can prevent recurrent vertebral fractures or related kyphosis in sagittal alignment.

Author(s):  
Wenle Li ◽  
Haosheng Wang ◽  
Shengtao Dong ◽  
Zhi-Ri Tang ◽  
Longhao Chen ◽  
...  

Abstract Purpose The aim of this work was to investigate the risk factors for cement leakage and new-onset OVCF after Percutaneous vertebroplasty (PVP) and to develop and validate a clinical prediction model (Nomogram). Methods Patients with Osteoporotic VCF (OVCF) treated with PVP at Liuzhou People’s Hospital from June 2016 to June 2018 were reviewed and met the inclusion criteria. Relevant data affecting bone cement leakage and new onset of OVCF were collected. Predictors were screened using univariate and multi-factor logistic analysis to construct Nomogram and web calculators. The consistency of the prediction models was assessed using calibration plots, and their predictive power was assessed by tenfold cross-validation. Clinical value was assessed using Decision curve analysis (DCA) and clinical impact plots. Results Higher BMI was associated with lower bone mineral density (BMD). Higher BMI, lower BMD, multiple vertebral fractures, no previous anti-osteoporosis treatment, and steroid use were independent risk factors for new vertebral fractures. Cement injection volume, time to surgery, and multiple vertebral fractures were risk factors for cement leakage after PVP. The development and validation of the Nomogram also demonstrated the predictive ability and clinical value of the model. Conclusions The established Nomogram and web calculator (https://dr-lee.shinyapps.io/RefractureApp/) (https://dr-lee.shinyapps.io/LeakageApp/) can effectively predict the occurrence of cement leakage and new OVCF after PVP.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Weiran Hu ◽  
Hongqiang Wang ◽  
Xinge Shi ◽  
Yuepeng Song ◽  
Guangquan Zhang ◽  
...  

Introduction. This study aimed to compare and analyze the effect of preoperative zoledronic acid (ZOL) administration on pain intensity after percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF). Methods. The study included 242 patients with OVCFs who underwent PVP in our hospital between January 2015 and June 2018. The patients were randomly assigned to either a ZOL group (n = 121) or a control group (n = 121). The patients in the ZOL group were treated preoperatively with intravenous infusion of 5 mg ZOL. Those in the control group were treated without ZOL. All the patients were followed up for 1 year. Results. No statistically significant differences in age, sex, weight, and body mass index (BMI) were found between the two groups. During the follow-up period, the visual analog scale score and Oswestry dysfunction index score in the ZOL group were lower than those in the control group. The bone mineral density at 6 or 12 months after treatment was significantly higher and the levels of the bone metabolism markers were significantly lower in the ZOL group than in the control group (P<0.05 for both). Two patients in the treatment group had new vertebral fractures, whereas 13 patients in the control group had new vertebral fractures, which translate to recompression vertebral fracture incidence rates of 1.7% and 10.7%, respectively. The incidence rate of mild adverse reactions was significantly higher in the ZOL group than in the control group, but all the cases were endurable. Conclusion. Intravenous infusion of ZOL before PVP can effectively reduce postoperative pain intensity, reduce bone loss, increase bone density, reduce the risk of refracture, and improve patient quality of life.


2021 ◽  
Vol 49 (1) ◽  
pp. 030006052198946
Author(s):  
Xiaoguang Fan ◽  
Sha Li ◽  
Xianshang Zeng ◽  
Weiguang Yu ◽  
Xiangzhen Liu

Objective To explore possible risk factors for poor outcomes following percutaneous vertebroplasty (PV) for painful osteoporotic compression fractures of thoracolumbar vertebra. Methods This was a retrospective review of data from patients who underwent PV at our institution over a ten-year period to evaluate the association between possible risk factors and thoracolumbar pain (T11-L2). According to the difference between pre- and post-operative visual analogue scale (VAS) scores for pain, patients were separated into poor relief (PR; <4) and good relief (GR; ≥4) of pain. Results Of the 750 patients identified, 630 (PR group, n =310; GR group, n = 320) fulfilled the eligibility criteria. Multivariate binary logistic analysis showed that bone mineral density (BMD), >2 fractured vertebral bodies, maldistribution of bone cement, <5 ml bone cement injected into a single vertebral body and thoracolumbar fascia injury prior to surgery were independent risk factors associated with thoracolumbar pain following PV. Conclusion Although prospective controlled studies are required to confirm our results, this review suggests that the above factors should be taken into account when selecting patients for PV.


2016 ◽  
Vol 25 (5) ◽  
pp. 591-595 ◽  
Author(s):  
Hironobu Sakaura ◽  
Toshitada Miwa ◽  
Tomoya Yamashita ◽  
Yusuke Kuroda ◽  
Tetsuo Ohwada

OBJECTIVE Several biomechanical studies have demonstrated the favorable mechanical properties of the cortical bone trajectory (CBT) screw. However, no reports have examined surgical outcomes of posterior lumbar interbody fusion (PLIF) with CBT screw fixation for degenerative spondylolisthesis (DS) compared with those after PLIF using traditional pedicle screw (PS) fixation. The purposes of this study were thus to elucidate surgical outcomes after PLIF with CBT screw fixation for DS and to compare these results with those after PLIF using traditional PS fixation. METHODS Ninety-five consecutive patients underwent PLIF with CBT screw fixation for DS (CBT group; mean followup 35 months). A historical control group consisted of 82 consecutive patients who underwent PLIF with traditional PS fixation (PS group; mean follow-up 40 months). Clinical status was assessed using the Japanese Orthopaedic Association (JOA) scale score. Fusion status was assessed by dynamic plain radiographs and CT. The need for additional surgery and surgery-related complications was also evaluated. RESULTS The mean JOA score improved significantly from 13.7 points before surgery to 23.3 points at the latest follow-up in the CBT group (mean recovery rate 64.4%), compared with 14.4 points preoperatively to 22.7 points at final follow-up in the PS group (mean recovery rate 55.8%; p < 0.05). Solid spinal fusion was achieved in 84 patients from the CBT group (88.4%) and in 79 patients from the PS group (96.3%, p > 0.05). Symptomatic adjacent-segment disease developed in 3 patients from the CBT group (3.2%) compared with 9 patients from the PS group (11.0%, p < 0.05). CONCLUSIONS PLIF with CBT screw fixation for DS provided comparable improvement of clinical symptoms with PLIF using traditional PS fixation. However, the successful fusion rate tended to be lower in the CBT group than in the PS group, although the difference was not statistically significant between the 2 groups.


2018 ◽  
Vol 21 (2) ◽  
pp. 190-196 ◽  
Author(s):  
Jonathan N. Sellin ◽  
Jeffrey S. Raskin ◽  
Kristen A. Staggers ◽  
Alison Brayton ◽  
Valentina Briceño ◽  
...  

Thoracic and lumbar cortical bone trajectory pedicle screws have been described in adult spine surgery. They have likewise been described in pediatric CT-based morphometric studies; however, clinical experience in the pediatric age group is limited. The authors here describe the use of cortical bone trajectory pedicle screws in posterior instrumented spinal fusions from the upper thoracic to the lumbar spine in 12 children. This dedicated study represents the initial use of cortical screws in pediatric spine surgery.The authors retrospectively reviewed the demographics and procedural data of patients who had undergone posterior instrumented fusion using thoracic, lumbar, and sacral cortical screws in children for the following indications: spondylolysis and/or spondylolisthesis (5 patients), unstable thoracolumbar spine trauma (3 patients), scoliosis (2 patients), and tumor (2 patients).Twelve pediatric patients, ranging in age from 11 to 18 years (mean 15.4 years), underwent posterior instrumented fusion. Seventy-six cortical bone trajectory pedicle screws were placed. There were 33 thoracic screws and 43 lumbar screws. Patients underwent surgery between April 29, 2015, and February 1, 2016. Seven (70%) of 10 patients with available imaging achieved a solid fusion, as assessed by CT. Mean follow-up time was 16.8 months (range 13–22 months). There were no intraoperative complications directly related to the cortical bone trajectory screws. One patient required hardware revision for caudal instrumentation failure and screw-head fracture at 3 months after surgery.Mean surgical time was 277 minutes (range 120–542 minutes). Nine of the 12 patients received either a 12- or 24-mg dose of recombinant human bone morphogenic protein 2. Average estimated blood loss was 283 ml (range 25–1100 ml).In our preliminary experience, the cortical bone trajectory pedicle screw technique seems to be a reasonable alternative to the traditional trajectory pedicle screw placement in children. Cortical screws seem to offer satisfactory clinical and radiographic outcomes, with a low complication profile.


Sign in / Sign up

Export Citation Format

Share Document