scholarly journals Production of High Flux Poly(Ether Sulfone) Membrane Using Silica Additive Extracted from Natural Resource

Membranes ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Sri Mulyati ◽  
Syawaliah Muchtar ◽  
Mukramah Yusuf ◽  
Nasrul Arahman ◽  
Sofyana Sofyana ◽  
...  

This paper reports the application of silica derived from natural biomasses of rice husk and bagasse ashes as membrane modifying agents. The modification was conducted on poly(ether sulfone) (PES) membrane by blending the silica into the dope solution. The modification was aimed to improve the structure and hydraulic performance of the resulting PES membrane. The effects of silica addition to the membrane system were evaluated through the analysis of change in chemical structure using ATR-FTIR, surface morphological change using AFM, and surface hydrophilicity using water contact angle measurement. SEM and AFM images show the silica loading significantly affects the membranes morphologies. Silica loading also promotes hydrophilic property as shown by the decrease in water contact angles from 82° to 52–60° due to the presence of polar groups in some residual silica in the membrane matrix. Silica blending also leads to the formation of membranes with higher permeability of up to three folds but lower humic acid rejection (78–62%). The findings indicate the role of silica to enhance the membrane pore size. The ability of membrane to reject humic acid (of 0.8 nm minimum diameter) indicating that the resulting membranes were in between tight ultrafiltration and nanofiltration type. Nonetheless, applying too-high silica concentration decreased the humic acid rejection most likely due to over enlargement of the membrane pore size.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mlungisi Martin Ngoma ◽  
Machodi Mathaba ◽  
Kapil Moothi

AbstractThis paper focuses on modifying a PES membrane with acid-functionalised carbon nanotubes (CNT) for industrial wastewater treatment. Embedding acid functionalised carbon nanotubes (CNTs) within the membrane matrix would increase the membrane flux by increasing the membrane pore size and surface area, rejection and thermal stability. Pure PES membranes were prepared by phase inversion method and infused with CNTs at 2.5, 5, 7.5 and 10 wt% loading to fabricate PES/2.5 wt% CNT, PES/5 wt% CNT, PES/7.5 wt% CNT and PES/10 wt% CNT membranes respectively. Characterisation was performed using Transmission Electron Microscopy (TEM) to determine CNT morphology, X-ray Diffraction (XRD) to determine the functional groups attached to CNTs, Thermogravimetric Analysis (TGA) to determine the thermal stability of the membranes, Scanning Electron Microscope (SEM) to determine membrane morphology, Bunauer-Emmett-Teller (BET) method to obtain pore size information and Contact Angle (CA) to determine the membrane hydrophilicity. Membrane performance was then evaluated with a dead-end stirred cell using industrial wastewater containing traces of Cu, Fe, Ni, Zn and Cl. Permeate flux results showed a direct proportion relationship with increasing CNT loading and increasing pressure (100 kPa, 300 kPa, 500 kPa, 700 kPa, 900 kPa and 1100 kPa). PES/5 wt% CNT membrane showed the most enhanced performance compared to the other membranes, achieving reasonably high flux of 43.7 L/m2h and rejection of 89.6% Cu, 100% Fe, 90.5% Ni, 68.8% Zn and 99.99% Cl at 300 kPa. The results obtained showed that the PES membrane embedded with functionalised CNTs could be used for the treatment of industrial wastewater.


2016 ◽  
Vol 99 (8) ◽  
pp. 6164-6179 ◽  
Author(s):  
Camilla Elise Jørgensen ◽  
Roger K. Abrahamsen ◽  
Elling-Olav Rukke ◽  
Anne-Grethe Johansen ◽  
Reidar B. Schüller ◽  
...  

2001 ◽  
Vol 34 (12) ◽  
pp. 1524-1531 ◽  
Author(s):  
TAKAAKI TANAKA ◽  
YOSHINOBU YAMAGIWA ◽  
TETSUYA NAGANO ◽  
MASAYUKI TANIGUCHI ◽  
KAZUHIRO NAKANISHI

2019 ◽  
Vol 824 ◽  
pp. 38-44
Author(s):  
Yupin Phuphuak ◽  
Thidarat Loythaworn

In this work, polyethersulfone (PES) was blended with bio-based polymers, PLA (hydrophobic polymer) and PEG (hydrophilic polymer), in order to improve the antifouling properties of PES membranes. This was done by way of non-solvent induced phase separation. Membrane properties such as morphology, hydrophilicity/hydrophobicity, adsorption fouling and mechanical properties were characterized. All blended membranes displayed higher hydrophilicity than that of pristine PES. This was confirmed by lower water contact angle and higher water adsorption. It was found that membranes with 5 wt% PLA/PEG gave a water contact angle of 65.1° and water adsorption for 4.94. These were the best values obtained. These modifications yielded low protein adsorption leading to reduce membrane fouling. Adding a greater amount of PLA/PEG reduced the membrane pore size, enhanced hydrophilicity and improved the antifouling capability


Sign in / Sign up

Export Citation Format

Share Document