scholarly journals Multicomponent Spiral Wound Membrane Separation Model for CO2 Removal from Natural Gas

Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 654
Author(s):  
Abdul Aiman Abdul Latif ◽  
Kok Keong Lau ◽  
Siew Chun Low ◽  
Babar Azeem

A spiral wound membrane (SWM) is employed to separate acid gases (mainly CO2) from natural gas due to its robustness, lower manufacturing cost, and moderate packing density compared to hollow fiber membranes. Various mathematical models are available to describe the separation performance of SWMs under different operating conditions. Nevertheless, most of the mathematical models deal with only binary gas mixtures (CO2 and CH4) that may lead to an inaccurate assessment of separation performance of multicomponent natural gas mixtures. This work is aimed to develop an SWM separation model for multicomponent natural gas mixtures. The succession stage method is employed to discretize the separation process within the multicomponent SWM module for evaluating the product purity, hydrocarbon loss, stage cut, and permeate acid gas composition. Our results suggest that multicomponent systems tend to generate higher product purity, lower hydrocarbon loss, and augmented permeate acid gas composition compared to the binary system. Furthermore, different multicomponent systems yield varied separation performances depending on the component of the acid gas. The developed multicomponent SWM separation model has the potential to design and optimize the spiral wound membrane system for industrial application.

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5428 ◽  
Author(s):  
Jacek Jaworski ◽  
Adrian Dudek

Thermal gas meters represent a promising technology for billing customers for gaseous fuels, however, it is essential to ensure that measurement accuracy is maintained in the long term and in a broad range of operating conditions. The effect of hydrogen addition to natural gas will change the physicochemical properties of the mixture of natural gas and hydrogen. Such a mixture will be supplied through the gas system, to consumers, including households, where the amounts of received gas will be metered. The physicochemical properties of hydrogen, including the specific density or viscosity, differ significantly from those of the natural gas components, such as methane, ethane, propane, nitrogen, etc. Therefore, it is of utmost importance to establish the impact of the changes in the gas composition caused by the addition of hydrogen to natural gas on the metrological properties of household gas meters, including thermal gas meters. Furthermore, since household gas meters can be installed outdoors and, taking into account the fact that household gas meters are good heat exchangers, the influence of ambient and gas temperature on the metrological properties of those meters should be investigated. This article reviews a test bench and a testing method concerning errors of thermal gas meter indicators using air and natural gas, including the type containing hydrogen. The indication errors for thermal gas meters using air, natural gas and natural gas with an addition of 2%, 4%, 5%, 10% and 15% hydrogen were determined and then subjected to metrological analysis. Moreover, the test method and test bench are discussed and the results of tests on the impact of ambient and gas temperatures (‒25 °C and 55 °C, respectively) on the errors of indications of thermal gas meters are presented. Conclusions for distribution system operators in terms of gas meter selection were drawn based on the test results.


Author(s):  
Serena Romano ◽  
Matteo Cerutti ◽  
Giovanni Riccio ◽  
Antonio Andreini ◽  
Christian Romano

Abstract Development of lean-premixed combustion technology with low emissions and stable operation in an increasingly wide range of operating conditions requires a deep understanding of the mechanisms that affect the combustion performance or even the operability of the entire gas turbine. Due to the relative wide range of natural gas composition supplies and the increased demand from Oil&Gas customers to burn unprocessed gas as well as LNG with notable higher hydrocarbons (C2+) content; the impact on gas turbine operability and combustion related aspects has been matter of several studies. In this paper, results of experimental test campaign of an annular combustor for heavy-duty gas turbine are presented with focus on the effect of fuel composition on both emissions and flame stability. Test campaign involved two different facilities, a full annular combustor rig and a full-scale prototype engine fed with different fuel mixtures of natural gas with small to moderate C2H6 content. Emissions trends and blowout for several operating conditions and burner configurations have been analyzed. Modifications to the burner geometry and fuel injection optimization have shown to be able to reach a good trade-off while keeping low NOx emissions in stable operating conditions for varying fuel composition.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Serena Romano ◽  
Matteo Cerutti ◽  
Giovanni Riccio ◽  
Antonio Andreini ◽  
Christian Romano

Abstract Development of lean-premixed combustion technology with low emissions and stable operation in an increasingly wide range of operating conditions requires a deep understanding of the mechanisms that affect the combustion performance or even the operability of the entire gas turbine. Due to the relative wide range of natural gas composition supplies and the increased demand from Oil&Gas customers to burn unprocessed gas as well as liquified natural gas (LNG) with notable higher hydrocarbons (C2+) content, the impact on gas turbine operability and combustion related aspects has been matter of several studies. In this paper, results of experimental test campaign of an annular combustor for heavy-duty gas turbine are presented with focus on the effect of fuel composition on both emissions and flame stability. Test campaign involved two different facilities, a full annular combustor rig and a full-scale prototype engine fed with different fuel mixtures of natural gas with small to moderate C2H6 content. Emission trends and blowout for several operating conditions and burner configurations have been analyzed. Modifications to the burner geometry and fuel injection optimization have shown to be able to reach a good tradeoff while keeping low NOx emissions in stable operating conditions for varying fuel composition.


2020 ◽  
Vol 16 (1) ◽  
pp. 54-58
Author(s):  
M. H. M. Halim ◽  
F. Kadirkhan ◽  
W. N. F. W. Mustapa ◽  
W. K. Soh ◽  
S. Y. Yeo

PETRONAS embarks on breakthrough technology for natural gas sweetening in high CO2 gas fields. Membrane technology is found to be one with high potential and a promising technology for bulk CO2 removal from natural gas. It can be suited to wide operating conditions to process varied natural gas composition, pressure and temperature. This paper focuses on the extensive development of PETRONAS in-house membrane and its evaluation for gas separation performance for high CO2 feed gas at different operating conditions; eg. feed gas flowrate, temperature, pressure, CO2 concentration in mixed gas system, and permeate pressure. For all the cases in this study, samples were tested at optimum gas flowrate of 1000 standard cm3/min (sccm) to obtain representative membrane performance. Feed gas pressure and CO2 concentration have shown significantly affect membrane permeation properties; whereas feed gas temperature and permeate pressure showed negligible impact. There is a trade-off between permeance and selectivity when CO2 concentration is increased from 40% to 70%; where the CO2 permeance increased by 12% which consequently reduces CO2/CH4 selectivity by 15%. In summary, the membrane developed in this study demonstrates high pressure durability up to 50 bar and temperature up to 55oC with satisfactory gas separation performance in the presence of high CO2 concentration in feed gas (up to 70% CO2). This work is breakthrough in establishing the operational boundary of PETRONAS Membrane for technology development and deployment in monetizing high CO2 gas field.


1990 ◽  
Vol 45 (5) ◽  
pp. 633-643 ◽  
Author(s):  
J. M. Prausnitz ◽  
R. L. Cotterman
Keyword(s):  

Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 282
Author(s):  
Leandri Vermaak ◽  
Hein W. J. P. Neomagus ◽  
Dmitri G. Bessarabov

This paper reports on an experimental evaluation of the hydrogen separation performance in a proton exchange membrane system with Pt-Co/C as the anode electrocatalyst. The recovery of hydrogen from H2/CO2, H2/CH4, and H2/NH3 gas mixtures were determined in the temperature range of 100–160 °C. The effects of both the impurity concentration and cell temperature on the separation performance of the cell and membrane were further examined. The electrochemical properties and performance of the cell were determined by means of polarization curves, limiting current density, open-circuit voltage, hydrogen permeability, hydrogen selectivity, hydrogen purity, and cell efficiencies (current, voltage, and power efficiencies) as performance parameters. High purity hydrogen (>99.9%) was obtained from a low purity feed (20% H2) after hydrogen was separated from H2/CH4 mixtures. Hydrogen purities of 98–99.5% and 96–99.5% were achieved for 10% and 50% CO2 in the feed, respectively. Moreover, the use of proton exchange membranes for electrochemical hydrogen separation was unsuccessful in separating hydrogen-rich streams containing NH3; the membrane underwent irreversible damage.


ACS Omega ◽  
2021 ◽  
Author(s):  
Nasrin Salimi Darani ◽  
Reza Mosayebi Behbahani ◽  
Yasaman Shahebrahimi ◽  
Afshin Asadi ◽  
Amir H. Mohammadi

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Jinlong Liu ◽  
Hemanth Kumar Bommisetty ◽  
Cosmin Emil Dumitrescu

Heavy-duty compression-ignition (CI) engines converted to natural gas (NG) operation can reduce the dependence on petroleum-based fuels and curtail greenhouse gas emissions. Such an engine was converted to premixed NG spark-ignition (SI) operation through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector. Engine performance and combustion characteristics were investigated at several lean-burn operating conditions that changed fuel composition, spark timing, equivalence ratio, and engine speed. While the engine operation was stable, the reentrant bowl-in-piston (a characteristic of a CI engine) influenced the combustion event such as producing a significant late combustion, particularly for advanced spark timing. This was due to an important fraction of the fuel burning late in the squish region, which affected the end of combustion, the combustion duration, and the cycle-to-cycle variation. However, the lower cycle-to-cycle variation, stable combustion event, and the lack of knocking suggest a successful conversion of conventional diesel engines to NG SI operation using the approach described here.


2000 ◽  
Vol 41 (10-11) ◽  
pp. 117-123 ◽  
Author(s):  
C. Visvanathan ◽  
P. Svenstrup ◽  
P. Ariyamethee

This paper presents a case study of a natural gas production site covering various technical issues related to selection of an appropriate Reverse Osmosis (RO) system. The long-term field experience indicates the necessity of the selection of appropriate pretreatment systems for fouling-free RO operational conditions. The produced water has a variety of impurities such as oil and grease, process chemicals used for corrosion and scaling control, and dehydration of natural gas, etc. This situation leads to a complicated and extremely difficult task for a membrane specialist to design RO systems, especially the pre-treatment section. Here as part of the pretreatment selection, two types of UF membrane modules viz. spiral wound and hollow fibre, with MWCO of 8000 and 50,000 Dalton respectively, were tested in parallel with NF membranes of the spiral wound type with MWCO 200 Dalton. The UF permeate is used as feed for RO compatibility testing. Both configurations of UF failed to be compatible, due to irreversible fouling of the RO membrane. The NF membrane, however, showed interesting results, due to membrane stability in terms of cleaning and fouling. The NF plant with 50% capacity gave a recovery of 75% and the RO plant gave a recovery of 60% versus the expected 92–95%. The long-term tests have indicated that the reminder of the membranes could be installed to achieve full capacity of the plant. This study also demonstrates the importance of selection of proper pre-treatment set-up for the RO system design.


Sign in / Sign up

Export Citation Format

Share Document