scholarly journals Ceramic Processing of Silicon Carbide Membranes with the Aid of Aluminum Nitrate Nonahydrate: Preparation, Characterization, and Performance

Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 714
Author(s):  
Esra Eray ◽  
Victor Manuel Candelario ◽  
Vittorio Boffa

The development of a low-cost and environmentally-friendly procedure for the fabrication of silicon carbide (SiC) membranes while achieving good membrane performance is an important goal, but still a big challenge. To address this challenge, herein, a colloidal coating suspension of sub-micron SiC powders was prepared in aqueous media by employing aluminum nitrate nonahydrate as a sintering additive and was used for the deposition of a novel SiC membrane layer onto a SiC tubular support by dip-coating. The sintering temperature influence on the structural morphology was studied. Adding aluminum nitrate nonahydrate reduced the sintering temperature of the as-prepared membrane compared to conventional SiC membrane synthesis. Surface morphology, pore size distribution, crystalline structure, and chemical and mechanical stability of the membrane were characterized. The membrane showed excellent corrosion resistance in acidic and basic medium for 30 days with no significant changes in membrane properties. The pure water permeance of the membrane was measured as 2252 L h−1 m−2 bar−1. Lastly, the final membrane with 0.35 µm mean pore size showed high removal of oil droplets (99.7%) in emulsified oil-in-water with outstanding permeability. Hence, the new SiC membrane is promising for several industrial applications in the field of wastewater treatment.

2007 ◽  
Vol 336-338 ◽  
pp. 1904-1905
Author(s):  
Chang Hong Dai ◽  
Ru Zhao ◽  
Li Shui ◽  
Bao Bao Zhang

A new method for preparing microporous ceramics by the silicon carbide whiskers was studied in this paper. The physical and chemical properties and the microstructure of the microporous ceramics were tested, while some influencing factors for the product, such as the amount of sintering aids and sintering temperature, were discussed. The results suggest that the apparent porosity of the microporous ceramics is 55.7-59.8% and the flexural strength is 127-176MPa. The pore distribution of the microporous ceramics is uniformity and the diameter of the pore ranges between 0.5μm and 7μm. The porosity and pore size of the microporous ceramic can be controlled by adjusting the sintering temperature and the amount of sintering aids.


2011 ◽  
Vol 44 (2) ◽  
pp. 105-109 ◽  
Author(s):  
Mizuki Kumashiro ◽  
Yoshinori Izumi ◽  
Takuya Hoshino ◽  
Yusuke Fujita ◽  
Izumi Hirasawa

2011 ◽  
Vol 34 (4) ◽  
pp. 525-529 ◽  
Author(s):  
M. Kumashiro ◽  
T. Hoshino ◽  
Y. Izumi ◽  
Y. Fujita ◽  
I. Hirasawa

2017 ◽  
Vol 898 ◽  
pp. 1929-1934
Author(s):  
Ye Kai Zhu ◽  
Da Jun Chen

Attapulgite (AT)-based nanofibrous membranes (NFMs) were fabricated via a facile papermaking procedure, and the AT-based NFMs were sintered at three different temperatures (240 °C, 400 °C, and 600 °C). The effect of sintering temperature on the structure and properties, such as specific surface area, pore size distribution, porosity, mechanical property, pure water fluxes of AT-based NFMs, were investigated. The results showed that average pore size, total pore volume, and porosity of AT-based NFMs increased with increasing of the sintering temperature, while specific surface area and flexural strength of AT-based NFMs decreased. The optimal sintering temperature for AT-based NFMs was 400 °C. In addition, it was also found that the swelling degree of AT-based NFMs in aqueous solutions was suppressed and the pure water fluxes of AT-based NFMs were improved by sintering process.


2021 ◽  
Author(s):  
Dehi Joung

Membrane fabrication and integration with microfluidic devices has received increased attention for applications including bio-detection (a device providing analytical information in a selective and quantitative manner using a biological recognition element), membrane-based separation, and biological sample purification. The main challenges associated with these applications have been: 1) meeting sensitivity/selectivity requirements, 2) decreasing costs, 3) maintaining the mechanical stability of the membrane, 4) offering high throughput. Therefore, the main goal of this study was to demonstrate size-based membrane separation and bio-detection using double layer channel developed in our lab and to show how the membrane integrated channel can selectively separate rod shape cell separation with various aspect ratio based on size and enhance bio detection rate with flow. Based on an existing double-channel and cross-flow microfluidics platform, we explored various polymeric materials for fabricating porous membranes to use in pore-size-dependent separation. We induced pores via stop-flow lithography, and investigated membrane properties and limitations for pore-size-dependent separation. We investigated potential applications of poly(ethylene glycol) diacrylate (PEGDA)-based membrane integrated platforms in biological molecule detection based on streptavidin and biotin interaction. We demonstrated that flow and concentrations can enhance target detection in this platform.


2021 ◽  
Author(s):  
Dehi Joung

Membrane fabrication and integration with microfluidic devices has received increased attention for applications including bio-detection (a device providing analytical information in a selective and quantitative manner using a biological recognition element), membrane-based separation, and biological sample purification. The main challenges associated with these applications have been: 1) meeting sensitivity/selectivity requirements, 2) decreasing costs, 3) maintaining the mechanical stability of the membrane, 4) offering high throughput. Therefore, the main goal of this study was to demonstrate size-based membrane separation and bio-detection using double layer channel developed in our lab and to show how the membrane integrated channel can selectively separate rod shape cell separation with various aspect ratio based on size and enhance bio detection rate with flow. Based on an existing double-channel and cross-flow microfluidics platform, we explored various polymeric materials for fabricating porous membranes to use in pore-size-dependent separation. We induced pores via stop-flow lithography, and investigated membrane properties and limitations for pore-size-dependent separation. We investigated potential applications of poly(ethylene glycol) diacrylate (PEGDA)-based membrane integrated platforms in biological molecule detection based on streptavidin and biotin interaction. We demonstrated that flow and concentrations can enhance target detection in this platform.


2018 ◽  
Vol 14 (2) ◽  
pp. 202
Author(s):  
Pranoto Pranoto ◽  
Tri Martini ◽  
Deta Agustin Rachmawati

<p>Telah dilakukan penelitian karakterisasi dan uji efektivitas <em>allophane-like</em> untuk adsorpsi ion logam tembaga (Cu). <em>Allophane-like</em> dibuat dengan mencampurkan larutan <em>Tetraethyl Orthosilicate</em> (TEOS) dan <em>Aluminum Nitrate Nonahydrate</em> [Al(NO<sub>3</sub>)<sub>3</sub>.9H<sub>2</sub>O] dengan perbandingan 0,5; 0,75; 1; 1,25 dan 1,5. Proses pencampuran dilakukan penambahan NaOH secara bertahap dan dilakukan pengadukan serta pemanasan. Penambahan NaOH dilakukan dengan membuat perbandingan NaOH dan Campuran TEOS dan Al(NO<sub>3</sub>)<sub>3</sub>.9H<sub>2</sub>O 3:1. pH campuran larutan yang diperoleh diukur dan pH larutan dibuat menjadi asam (pH 3-4). <em>Allophane-like</em><em> </em>dikarakterisasi dengan spektroskopi infra merah (FTIR), XRD, keasaman, dan luas permukaan. Uji adsorpsi terhadap ion logam tembaga (Cu) dilakukan pada variasi perbandingan TEOS dan Al(NO<sub>3</sub>)<sub>3</sub>.9H<sub>2</sub>O 0,5; 0,75; 1; 1,25 dan 1,5, pH larutan tembaga (Cu) 3-7 serta waktu kontak 30-120 menit dengan sistem <em>batch</em>. Hasil penelitian diketahui bahwa <em>allophane-like </em>memiliki gugus fungsi yang sama dengan <em>allophane-</em><em>alam </em>yang ditunjukkan dengan data FTIR yaitu memiliki puncak yang sama pada 3431-3252; 1631; 1071; 785; dan 562-457 cm<sup>-1</sup>. Hasil analisa XRD, keasaman dan luas permukaan menunjukkan karakteristik yang berbeda. Kondisi adsorpsi ion logam tembaga (Cu) terjadi pada variasi perbandingan TEOS dan Al(NO<sub>3</sub>)<sub>3</sub>.9H<sub>2</sub>O 1,5, pH 6, waktu kontak 120 menit, persentase penyerapan 41,79% dan kapasitas adsorpsi 0,97865 mg/g.</p><p><strong>Characterization and Effectivity of </strong><strong>Allophane-Like </strong><strong>in</strong><strong> </strong><strong>the Adsorption of</strong><strong> </strong><strong>Metal Ion of Copper (Cu).</strong> The characterization and effectivity testing of allophane-like for adsorption copper (Cu) metal ion has been studied. Allophane-like was prepared by mixing a solution of Tetraethylorthosilicate (TEOS) and Aluminum Nitrate nonahydrate [Al(NO<sub>3</sub>)<sub>3</sub>.9H2O] using ratio of 0.5; 0.75; 1; 1.25 and 1.5. The mixing process was done gradually adding NaOH and stirring and heating. The addition of NaOH was done by making a comparison between NaOH and mixture of TEOS dan Al(NO<sub>3</sub>)<sub>3</sub>.9H<sub>2</sub>O in 3:1. The pH of the mixture solution was measured and made acidic solution (pH 3-4). Allophane-like was characterized by infrared spectroscopy (FTIR), XRD, acidity, and surface area. The adsorption evaluation of copper (Cu) metal ion was done on the variation of the composition of TEOS dan Al(NO<sub>3</sub>)<sub>3</sub>.9H<sub>2</sub>O in 0.5; 0.75; 1; 1.25 and 1.5, the pH of a solution of copper (Cu) 3-7 and contact time of 30-120 minutes in batch system. The results revealed that the allophane-like has the same functional group with nature allophane indicated by the FTIR data that has the same peak at 3431-3252; 1631; 1071; 785; and 562-457 cm<sup>-1</sup>. XRD analysis results, acidity and surface area showed different characteristics. The best conditions adsorption of copper (Cu) metal ion occured at the composition of TEOS dan Al(NO<sub>3</sub>)<sub>3</sub>.9H<sub>2</sub>O in 1.5, pH 6, the contact time of 120 minutes, the absorption percentage of 41.79% and adsorption capacity of 0.97865 mg/g.</p>


Sign in / Sign up

Export Citation Format

Share Document