scholarly journals Peritoneal-Membrane Characteristics and Hypervolemia Management in Peritoneal Dialysis: A Randomized Control Trial

Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 768
Author(s):  
Szu-Yuan Li ◽  
Chiao-Lin Chuang ◽  
Chih-Ching Lin ◽  
Shin-Hung Tsai ◽  
Jinn-Yang Chen

Excessive bodily-fluid retention is the major cause of hypertension and congestive heart failure in patients with end-stage renal disease. Compared to hemodialysis, peritoneal dialysis (PD) uses the abdominal peritoneum as a semipermeable dialysis membrane, providing continuous therapy as natural kidneys, and having fewer hemodynamic changes. One major challenge of PD treatment is to determine the dry weight, especially considering that the speed of small solutes and fluid across the peritoneal membrane varies among individuals; considerable between-patient variability is expected in both solute transportation and ultrafiltration capacity. This study explores the influence of peritoneal-membrane characteristics in the hydration status in patients on PD. A randomized control trial compares the bioimpedance-assessed dry weight with clinical judgment alone. A high peritoneal membrane D/P ratio was associated with the extracellular/total body water ratio, dialysate protein loss, and poor nutritional status in patients on PD. After a six-month intervention, patients with monthly bioimpedance analysis (BIA) assistance had better fluid (−1.2 ± 0.4 vs. 0.1 ± 0.4 kg, p = 0.014) and blood-pressure (124.7 ± 2.7 vs. 136.8 ± 2.8 mmHg, p < 0.001) control; however, hydration status and blood pressure returned to the baseline after we prolonged BIA assistance to a 3-month interval. The dry-weight reduction process had no negative effect on residual renal function or peritoneal-membrane function. We concluded that peritoneal-membrane characteristics affect fluid and nutritional status in patients on PD, and BIA is a helpful objective technique for fluid assessment for PD.

2017 ◽  
Vol 37 (4) ◽  
pp. 458-463 ◽  
Author(s):  
Rafaela Siviero Caron-Lienert ◽  
Carlos Eduardo Poli-de-Figueiredo ◽  
Ana Elizabeth Prado Lima Figueiredo ◽  
Bartira Ercília Pinheiro da Costa ◽  
Carlo Crepaldi ◽  
...  

BackgroundThe characteristics of peritoneal membrane transport differ among patients, affecting the prescription of peritoneal dialysis (PD) modality and glucose exposure in order to achieve an effective dialysis. This study aims to verify the influence of glucose exposure load and peritoneal membrane transport on body composition and nutritional status changes after the first year of PD.MethodsWe examined a cohort of 85 incident PD patients during the first year of treatment. We established a cut-off of 5% to define changes in dry weight (DW), lean tissue mass (LTM), and fat mass (FM).ResultsIn total, 50.6% of the patients presented DW gain, 41.2% showed LTM loss, and 65.9% presented FM gain. Over the time (T0 – T12), we found significant differences in DW, body mass index (BMI), adipose tissue mass (ATM), FM and fat tissue index (FTI). Patients with lower dialysate-to-plasma creatinine ratio showed DW and FM gain. We observed a higher percentage of nonfast transporters in DW gain when comparing with DW no gain. As for glucose exposure load, no body composition changes were seen.ConclusionsMost patients presented DW gain, FM gain, and LTM loss. The characteristics of peritoneal membrane transport affected DW during the first year, changes being greater in nonfast than in fast transporters.


2017 ◽  
Vol 37 (3) ◽  
pp. 338-340 ◽  
Author(s):  
Kwanpeemai Panorchan ◽  
Andrew Davenport

Renal replacement therapy is designed to treat uremic symptoms and correct hypervolemia. We hypothesized that starting peritoneal dialysis (PD) should reduce overhydration, and we measured body composition and hydration status using bio-impedance in PD patients prior to training and then at the first assessment of peritoneal membrane function. We studied 100 consecutive patients with a planned start to PD, without peritoneal infections or mechanical catheter problems, mean age 54.7 ± 17.1 years, 57% male and 25% diabetic. Extracellular water (ECW) overhydration increased from -0.06 (-1.21 to 0.97) L to 0.96 (0.50 to 3.01) L, p < 0.001. Fat mass increased from 22.7 ± 11.1 to 23.7 ± 11.3 kg, p = 0.007). The change in ECW/ total body water (TBW) was associated with age (β 0.065, p < 0.001), increasing comorbidity (β 1.107, p = 0.005), faster peritoneal protein transport (β 1.84, p < 0.04), and negatively with serum albumin (β -0.208, p < 0.001), and residual renal function (β -0.725, p = 0.026). Patients who had an increase in ECW/TBW had higher C-reactive protein (CRP) both before starting (16.8 ± 24.1 vs 7.7 ± 18.9 mg/L), and when established on PD (15.0 ± 31.8 vs 4.6 ± 5.1 mg/L), p < 0.05. Rather than a reduction in ECW hydration status, overhydration increased after starting PD. This was greater for older more comorbid patients and those with an inflammatory milieu and lower residual renal function. These factors should be considered when deciding upon initial PD prescriptions to limit ECW over-hydration before information on peritoneal membrane function becomes available.


1999 ◽  
Vol 19 (3_suppl) ◽  
pp. 35-42 ◽  
Author(s):  
Ram Gokal

Over the past 25 years, peritoneal dialysis (PD) has steadily improved so that now its outcomes, in the form of patient survival, are equivalent to, and at times better than, those for hemodialysis. We now have a better understanding of the pathophysiology of peritoneal membrane function and damage and the importance of appropriate prescription to meet agreed-upon targets of solute and fluid removal. In the next millennium, greater emphasis will be put on prescription setting and subsequent monitoring. This will entail an increase in automated PD, especially for lifestyle reasons as well as for patients with a hyperpermeable peritoneal membrane. To improve outcomes, dialysis should be started earlier than is currently the case. It is easy to do this with PD, where an incremental approach is made easier by the introduction of icodextrin for long-dwell PD. In the future, solutions will be tailored to be more biocompatible and to provide improved nutrition and better cardiovascular outcomes. Finally, economic considerations favor PD, which is cheaper than in-centre hemodialysis. Thus, for many, PD has become a first-choice therapy, and with further improvements this trend will continue.


2018 ◽  
Vol 38 (5) ◽  
pp. 381-384 ◽  
Author(s):  
Ali M. Shendi ◽  
Nathan Davies ◽  
Andrew Davenport

Previous reports linked systemic endotoxemia in dialysis patients to increased markers of inflammation, cardiovascular disease, and mortality. Many peritoneal dialysis (PD) patients use acidic, hypertonic dialysates, which could potentially increase gut permeability, resulting in systemic endotoxemia. However, the results from studies measuring endotoxin in PD patients are discordant. We therefore measured systemic endotoxin in 55 PD outpatients attending for routine assessment of peritoneal membrane function; mean age 58.7 ± 16.4 years, 32 (58.2%) male, 21 (38.2%) diabetic, median duration of PD treatment 19.5 (13 – 31) months, 32 (58.2%) using 22.7 g/L dextrose dialysates, and 47 (85.5%) icodextrin. The median systemic endotoxin concentration was 0.0485 (0.0043 – 0.103) Eu/mL. We found no association between endotoxin levels and patient demographics, markers of inflammation, serum albumin, N-terminal pro-brain natriuretic peptide, extracellular volume measured by bioimpedance, blood pressure, PD prescriptions or peritoneal membrane transporter status, or medications. The measurement of endotoxin can be lowered by failure to effectively release protein-bound endotoxin prior to analysis and increased by contamination when taking blood samples and processing and storing the samples. Additionally, contamination with β–glucan from fungal cell walls and the use of different assays to analyze endotoxin can also give differing results. These factors may help to explain the disparate results reported in different studies. Our study would suggest that exposure to standard peritoneal dialysates does not substantially increase systemic endotoxin. However, until endotoxin assays can measure free and bound endotoxin separately, the role of endotoxin causing inflammation in PD patients remains to be determined.


2001 ◽  
Vol 21 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Simon J. Davies

Objective Peritoneal membrane function influences dialysis prescription and clinical outcome and may change with time on treatment. Increasingly sophisticated tools, ranging from the peritoneal equilibration test (PET) to the standard permeability analysis (SPA) and personal dialysis capacity (PDC) test, are available to the clinician and clinical researcher. These tests allow assessment of a number of aspects of membrane function, including solute transport rates, ultrafiltration capacity, effective reabsorption, transcellular water transport, and permeability to macromolecules. In considering which tests are of greatest value in monitoring long-term membrane function, two criteria were set: those that result in clinically relevant interpatient differences in achieved ultrafiltration or solute clearances, and those that change with time in treatment. Study Selection Clinical validation studies of the PET, SPA, and PDC tests. Studies reporting membrane function using these methods in either long-term (5 years) peritoneal dialysis patients or longitudinal observations (> 2 years). Data Extraction Directly from published data. Additional, previously unpublished analysis of data from the Stoke PD Study. Results Solute transport is the most important parameter. In addition to predicting patient and technique survival at baseline, there is strong evidence that it can increase with time on treatment. Whereas patients with initially high solute transport drop out early from treatment, those with low transport remain longer on treatment, although, over 5 years, a proportion develop increasing transport rates. Ultrafiltration capacity, while being a composite measure of membrane function, is a useful guide for the clinician. Using the PET (2.27% glucose), a net ultrafiltration capacity of < 200 mL is associated with a 50% chance of achieving less than 1 L daily ultrafiltration at the expense of 1.8 hypertonic (3.86%) exchanges in anuric patients. Using a SPA (3.86% glucose), a net ultrafiltration capacity of < 400 mL indicates ultrafiltration failure. While there is circumstantial evidence that, with time on peritoneal dialysis, loss of transcellular water transport might contribute to ultrafiltration failure, none of the current tests is able to demonstrate this unequivocally. Of the other membrane parameters, evidence that interpatient differences are clinically relevant (permeability to macro-molecules), or that they change significantly with time on treatment (effective reabsorption), is lacking. Conclusion A strong case can be made for the regular assessment by clinicians of solute transport and ultrafiltration capacity, a task made simple to achieve using any of the three tools available.


1989 ◽  
Vol 9 (1) ◽  
pp. 75-78 ◽  
Author(s):  
Min Sun Park ◽  
Jean Lee ◽  
Moon Sung Lee ◽  
Seung Ho Baick ◽  
Seung Duk Hwang ◽  
...  

In order to evaluate peritoneal membrane function and responsiveness of peritoneal microcirculation to vasoactive agents in long-term continuous ambulatory peritoneal dialysis (CAPD) patients, we studied peritoneal clearances of urea (Curea) and creatinine (Ccr), protein concentrations in drained dialysate (D PC), peritoneal glucose absorption (% GA), and drained dialysate volume ( VD) before and after nitroprusside (NP) addition to dialysis solution in 17 long-term CAPD patients (mean duration of CAPD: 52 months) and the results were compared to those of 18 patients who were just trained for CAPD (mean duration: 0.6 month). There were no differences in the control (without NP) Curea, Ccr, D PC, %GA, and VD between the new and long-term CAPD patients. Curea, Ccr, and D PC increased significantly with NP in both new and long-term patients. Curea and Ccr with NP were not different between the new and long-term patients but D PC with NP was significantly lower in the long-term CAPD patients. The results of this study suggest that peritoneal solute clearances and the responsiveness of peritoneal microcirculation to NP remain unchanged after four years of CAPD, despite recurrent episodes of peritonitis.


2004 ◽  
Vol 24 (3) ◽  
pp. 231-239 ◽  
Author(s):  
Ramzana B. Asghar ◽  
Sandra Green ◽  
Barbara Engel ◽  
Simon J. Davies

Objectives To establish which clinical factors are associated with an increased proportion of extracellular fluid (ECF) in peritoneal dialysis (PD) patients. Design A single-center, cross-sectional analysis of 68 stable PD patients. Method Bioelectrical impedance measurements (RJL, single frequency; RJL Systems, Clinton, Michigan, USA) of resistance and reactance were used to determine the proportion of ECF comprising total body water (TBW) in 68 stable PD patients attending for routine clearance and membrane studies. All patients underwent detailed dietetic, adequacy, and membrane function tests. Blood pressure and antihypertensive requirements were also documented. Results Significant gender differences in body composition were observed, such that women had lower absolute TBW and fat-free mass per kilogram body weight, but proportionately more ECF for a given TBW, mean ECF:TBW 0.5 ± 0.03 versus 0.44 ± 0.05, p < 0.005. In view of this, patients were split into two groups, defined as “over-” or “normally” hydrated, either by using the single discriminator (median ECF:TBW = 0.47) for the whole population, which resulted in groups distorted by gender, or by using different discriminators according to gender (women: 0.49, men 0.45). In both analyses, overhydrated patients were older, had significantly lower plasma albumin, less total fluid removal per kilogram body weight, and higher peritoneal solute transport. When split by a single discriminator, the overhydrated patients had lower sodium removal and significantly less intracellular fluid volume due to an excess of women in this group who also had less residual function and had been on dialysis longer. Using gender-specific discrimination, overhydrated patients were heavier due to expansion of the ECF volume: 20 ± 4.1 L versus 16 ± 3.3 L, p < 0.001. Stepwise multivariate analysis found age ( p = 0.001), albumin ( p = 0.009), and fluid losses per kilogram body weight ( p = 0.025) to be independent predictors of gender-adjusted hydration status. Sodium intake did not vary according to hydration status. Conclusion Gender influences the assessment of hydration status of PD patients when employing bioimpedance, such that women tend to have more ECF. Taking this into account, age, albumin, and achieved fluid removal appear to be independently associated with hydration status, whereas peritoneal solute transport is not. Advice on dietary sodium should take account of hydration status and achievable losses.


Sign in / Sign up

Export Citation Format

Share Document