Monitoring of Long-Term Peritoneal Membrane Function

2001 ◽  
Vol 21 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Simon J. Davies

Objective Peritoneal membrane function influences dialysis prescription and clinical outcome and may change with time on treatment. Increasingly sophisticated tools, ranging from the peritoneal equilibration test (PET) to the standard permeability analysis (SPA) and personal dialysis capacity (PDC) test, are available to the clinician and clinical researcher. These tests allow assessment of a number of aspects of membrane function, including solute transport rates, ultrafiltration capacity, effective reabsorption, transcellular water transport, and permeability to macromolecules. In considering which tests are of greatest value in monitoring long-term membrane function, two criteria were set: those that result in clinically relevant interpatient differences in achieved ultrafiltration or solute clearances, and those that change with time in treatment. Study Selection Clinical validation studies of the PET, SPA, and PDC tests. Studies reporting membrane function using these methods in either long-term (5 years) peritoneal dialysis patients or longitudinal observations (> 2 years). Data Extraction Directly from published data. Additional, previously unpublished analysis of data from the Stoke PD Study. Results Solute transport is the most important parameter. In addition to predicting patient and technique survival at baseline, there is strong evidence that it can increase with time on treatment. Whereas patients with initially high solute transport drop out early from treatment, those with low transport remain longer on treatment, although, over 5 years, a proportion develop increasing transport rates. Ultrafiltration capacity, while being a composite measure of membrane function, is a useful guide for the clinician. Using the PET (2.27% glucose), a net ultrafiltration capacity of < 200 mL is associated with a 50% chance of achieving less than 1 L daily ultrafiltration at the expense of 1.8 hypertonic (3.86%) exchanges in anuric patients. Using a SPA (3.86% glucose), a net ultrafiltration capacity of < 400 mL indicates ultrafiltration failure. While there is circumstantial evidence that, with time on peritoneal dialysis, loss of transcellular water transport might contribute to ultrafiltration failure, none of the current tests is able to demonstrate this unequivocally. Of the other membrane parameters, evidence that interpatient differences are clinically relevant (permeability to macro-molecules), or that they change significantly with time on treatment (effective reabsorption), is lacking. Conclusion A strong case can be made for the regular assessment by clinicians of solute transport and ultrafiltration capacity, a task made simple to achieve using any of the three tools available.

2018 ◽  
Vol 14 (2) ◽  
pp. 297-305 ◽  
Author(s):  
Vasilios Vaios ◽  
Panagiotis I. Georgianos ◽  
Vassilios Liakopoulos ◽  
Rajiv Agarwal

Approximately 7%–10% of patients with ESKD worldwide undergo peritoneal dialysis (PD) as kidney replacement therapy. The continuous nature of this dialytic modality and the absence of acute shifts in pressure and volume parameters is an important differentiation between PD and in-center hemodialysis. However, the burden of hypertension and prognostic association of BP with mortality follow comparable patterns in both modalities. Although management of hypertension uses similar therapeutic principles, long-term preservation of residual diuresis and longevity of peritoneal membrane function require particular attention in the prescription of the appropriate dialysis regimen among those on PD. Dietary sodium restriction, appropriate use of icodextrin, and limited exposure of peritoneal membrane to bioincompatible solutions, as well as adaptation of the PD regimen to the peritoneal transport characteristics, are first-line therapeutic strategies to achieve adequate volume control with a potential long-term benefit on technique survival. Antihypertensive drug therapy is a second-line therapeutic approach, used when BP remains unresponsive to the above volume management strategies. In this article, we review the available evidence on epidemiology, diagnosis, and treatment of hypertension among patients on PD and discuss similarities and differences between PD and in-center hemodialysis. We conclude with a call for randomized trials aiming to elucidate several areas of uncertainty in management of hypertension in the PD population.


2021 ◽  
Vol 10 (16) ◽  
pp. 3650
Author(s):  
Olga Balafa ◽  
Anila Duni ◽  
Paraskevi Tseke ◽  
Karolos Rapsomanikis ◽  
Paraskevi Pavlakou ◽  
...  

Background: Longitudinal surveillance of peritoneal membrane function is crucial in defining patients with a risk of ultrafiltration failure. Long PD is associated with increased low molecular weight solute transport and decreased ultrafiltration and free water transport. Classic PET test only provides information about low molecular solute transport, and the vast majority of longitudinal studies are based on this test and include patients using conventional dialysates. Our aim was to prospectively analyze longitudinal data on peritoneal function in patients on biocompatible solutions using a novel test. Methods: Membrane function data were collected based on uni-PET (a combination of modified and mini PET). A total of 85 patients (age 61.1 ± 15.1 years) with at least one test/year were included. Results: The median follow up was 36 months (21.3, 67.2). A total of 219 PETs were performed. One-way repeated measures ANOVA showed that there were no statistically significant differences over time in ultrafiltration, free water transport, ultrafiltration through small pores, sodium removal, D/D0 and D/PCre in repeated PET-tests. Twenty-three tests revealed ultrafiltration failure in 16 (18.8%) patients. Those patients were longer on PD, had higher D/P creatinine ratios, lower ultrafiltration at one hour with lower free water transport and higher urine volume at baseline. Multivariate analysis revealed that the variation of ultrafiltration over repeated PET-tests independently correlated only with D/Pcreatinine, free water transport and ultrafiltration through small pores. Conclusions. Uni-PET is a combination of two tests that provides more information on the function of the membrane compared with PET. Our study on a PD cohort using only biocompatible solutions revealed that function membrane parameters remained stable over a long time. Ultrafiltration failure was correlated with increased D/P creatinine and decreased free water transport and ultrafiltration through small pores.


1989 ◽  
Vol 9 (1) ◽  
pp. 75-78 ◽  
Author(s):  
Min Sun Park ◽  
Jean Lee ◽  
Moon Sung Lee ◽  
Seung Ho Baick ◽  
Seung Duk Hwang ◽  
...  

In order to evaluate peritoneal membrane function and responsiveness of peritoneal microcirculation to vasoactive agents in long-term continuous ambulatory peritoneal dialysis (CAPD) patients, we studied peritoneal clearances of urea (Curea) and creatinine (Ccr), protein concentrations in drained dialysate (D PC), peritoneal glucose absorption (% GA), and drained dialysate volume ( VD) before and after nitroprusside (NP) addition to dialysis solution in 17 long-term CAPD patients (mean duration of CAPD: 52 months) and the results were compared to those of 18 patients who were just trained for CAPD (mean duration: 0.6 month). There were no differences in the control (without NP) Curea, Ccr, D PC, %GA, and VD between the new and long-term CAPD patients. Curea, Ccr, and D PC increased significantly with NP in both new and long-term patients. Curea and Ccr with NP were not different between the new and long-term patients but D PC with NP was significantly lower in the long-term CAPD patients. The results of this study suggest that peritoneal solute clearances and the responsiveness of peritoneal microcirculation to NP remain unchanged after four years of CAPD, despite recurrent episodes of peritonitis.


1999 ◽  
Vol 19 (2_suppl) ◽  
pp. 91-94 ◽  
Author(s):  
Simon J. Davies ◽  
Louise Phillips ◽  
Anne M. Griffiths ◽  
Lesley H. Russell ◽  
Patrick F. Naish ◽  
...  

It is increasingly clear that peritoneal membrane transport status has clinical implications. The role of the peritoneum in dialysis delivery becomes para mount once residual renal function is lost, particularly as the membrane characteristics may change for the worse with time on treatment. These findings have several important implications: Clinicians need to take solute transport character istics into account as they assess their patients. Adverse effects of high solute transport include reduced ultrafiltration, solute removal (in particular, sodium), and increased peritoneal protein losses. A need exists to replace lost residual renal function, not just with enhanced solute removal, but also with adequate salt and water removal. The interpretation of urea and creatinine clear ances in anuric PD patients needs further consideration and validation. Hypoalbuminemia in PD patients will result from the combined effects of high protein losses, over hydration, comorbidity, and malnutrition.


2008 ◽  
Vol 28 (3_suppl) ◽  
pp. 107-113
Author(s):  
Talerngsak Kanjanabuch ◽  
Monchai Siribamrungwong ◽  
Rungrote Khunprakant ◽  
Sirigul Kanjanabuch ◽  
Piyathida Jeungsmarn ◽  
...  

⋄ Background Continuous exposure of the peritoneal membrane to dialysis solutions during long-term dialysis results in mesothelial cell loss, peritoneal membrane damage, and thereby, ultrafiltration (UF) failure, a major determinant of mortality in patients on continuous ambulatory peritoneal dialysis (CAPD). Unfortunately, none of tests available today can predict long-term UF decline. Here, we propose a new tool to predict such a change. ⋄ Mesothelial cells from 8-hour overnight effluents (1.36% glucose dialysis solution) were harvested, co-stained with cytokeratin (a mesothelial marker) and TUNEL (an apoptotic marker), and were counted using flow cytometry in 48 patients recently started on CAPD. Adequacy of dialysis, UF, nutrition status, dialysate cancer antigen 125 (CA125), and a peritoneal equilibration test (3.86% glucose peritoneal dialysis solution) were simultaneously assessed and were reevaluated 1 year later. ⋄ Results The numbers of total and apoptotic mesothelial cells were 0.19 ± 0.19 million and 0.08 ± 0.12 million cells per bag, respectively. Both numbers correlated well with the levels of end dialysate–to–initial dialysate (D/D0) glucose, dialysate-to-plasma (D/P) creatinine, and sodium dipping. Notably, the counts of cells of both types in patients with diabetes or with high or high-average transport were significantly greater than the equivalent counts in nondiabetic patients or those with low or low-average transport. A cutoff of 0.06 million total mesothelial cells per bag had sensitivity of 1 and a specificity of 0.75 in predicting a further decline in D/D0 glucose and a sensitivity of 0.86 and a specificity of 0.63 to predict a further decline in UF over a 1-year period. In contrast, dialysate CA125 and other measured parameters had low predictive values. ⋄ Conclusions The greater the loss of exfoliated cells, the worse the expected decline in UF. The ability of a count of mesothelial cells to predict a future decline in UF warrants further investigation in clinical practice.


2015 ◽  
Vol 35 (5) ◽  
pp. 517-529 ◽  
Author(s):  
Imad Siddique ◽  
K. Scott Brimble ◽  
Louise Walkin ◽  
Angela Summers ◽  
Paul Brenchley ◽  
...  

BackgroundOutcomes for peritoneal dialysis (PD) patients are affected by the characteristics of the peritoneal membrane, which may be determined by genetic variants. We carried out a systematic review of the literature to identify studies which assessed the association between genetic polymorphisms, peritoneal membrane solute transport, and clinical outcomes for PD patients.MethodsThe National Library of Medicine was searched using a variety of strategies. Studies which met our inclusion criteria were reviewed and data abstracted. Our outcomes of interest included: high transport status peritoneal membrane, risk for peritonitis, encapsulating peritoneal sclerosis (EPS), patient and technique survival. We combined data from studies which evaluated the same genetic polymorphism and the same outcome.ResultsWe evaluated 18 relevant studies. All studies used a candidate gene approach. Gene polymorphisms in the interleukin (IL)-6 gene were associated with peritoneal membrane solute transport in several studies in different ethnic populations. Associations with solute transport and polymorphisms in endothelial nitric oxide synthase and receptor for advanced glycation end product genes were also identified. There was evidence of a genetic predisposition for peritonitis found in 2 studies, and for EPS in 1 study. Survival was found to be associated with a polymorphism in vascular endothelial growth factor and technique failure was associated with a polymorphism in the IL-1 receptor antagonist.ConclusionsThere is evidence that characteristics of the peritoneal membrane and clinical outcomes for PD patients have genetic determinants. The most consistent association was between IL-6 gene polymorphisms and peritoneal membrane solute transport.


1993 ◽  
Vol 84 (6) ◽  
pp. 619-626 ◽  
Author(s):  
E. Lamb ◽  
W. R. Cattell ◽  
A. Dawnay

1. Chronic use of hyperosmolar glucose solutions in continuous ambulatory peritoneal dialysis may cause glycation of peritoneal structural proteins which could contribute to membrane dysfunction and ultrafiltration failure. To determine whether glycation can occur in the environment of the dialysate, we have carried out studies using albumin as a model protein. 2. Glycated albumin was measured in the serum and dialysate of 46 patients on continuous ambulatory peritoneal dialysis (31 non-diabetic patients, 15 diabetic patients). Dialysate and serum glycated albumin (ranges 1.0-12.7% and 0.9-10.2%, respectively) were related to each other (r = 0.988, P <0.001), but dialysate glycated albumin was significantly higher than serum glycated albumin (P <0.0001), with the dialysate to serum glycated albumin ratio being greater than unity in 76% of patients (mean ratio 1.14). This implies either preferential transfer of glycated albumin across the peritoneal membrane or intraperitoneal glycation during the dwell period. 3. In vitro, significant glycation occurred in dialysate during a 6 h incubation period (P <0.01) at a rate related to the glucose concentration in the dialysate (rs = 0.63, P <0.05). The glycation rate was not significantly affected (P = 0.05) by factors other than the glucose concentration. 4. Our results demonstrate that protein glycation occurs within the peritoneum during continuous ambulatory peritoneal dialysis. Further studies are required to establish the relationship of glycation of structural proteins in the peritoneal membrane to membrane function.


1999 ◽  
Vol 10 (12) ◽  
pp. 2585-2590
Author(s):  
STANISLAO MORGERA ◽  
SIMONE KUCHINKE ◽  
KLEMENS BUDDE ◽  
ANDREAS LUN ◽  
BERTHOLD HOCHER ◽  
...  

Abstract. In long-term peritoneal dialysis, functional deterioration of the peritoneal membrane is often associated with proliferative processes of the involved tissues leading to peritoneal fibrosis. In continuous ambulatory peritoneal dialysis (CAPD), failure to achieve target values for adequacy of dialysis is commonly corrected by increasing dwell volume; in case of ultrafiltration failure, osmolarity of the dialysate gets increased. In a prospective study, the impact of increasing dwell volume from 1500 ml to 2500 ml per dwell (volume trial) or changing the osmolarity of the dialysate from 1.36 to 3.86% glucose (hyperosmolarity trial) on the peritoneal endothelin-1 (ET-1) release was analyzed. ET-1 is known to exert significant proliferative activities on a variety of cell types leading to an accumulation of extracellular matrix. A highly significant difference in the cumulative peritoneal ET-1 synthesis was found between the low- and high-volume exchange, whereas differences in the hyperosmolarity setting were only moderate. Sixty minutes after initiating dialysis, the cumulative ET-1 synthesis was 2367 ± 1023 fmol for the 1500 ml versus 6062 ± 1419 fmol for the 2500 dwell (P < 0.0001) and 4572 ± 969 fmol versus 6124 ± 1473 fmol for the 1.36 and 3.86% glucose dwell (P < 0.05), respectively. In conclusion, increasing dwell volume leads to a strong activation of the peritoneal paracrine endothelin system. Because ET-1, apart from being a potent vasoactive peptide, contributes to fibrotic remodeling, this study indicates that volume stress-induced ET-1 release might contribute to structural alteration of the peritoneal membrane in long-term peritoneal dialysis.


2001 ◽  
Vol 12 (5) ◽  
pp. 1046-1051 ◽  
Author(s):  
SIMON J. DAVIES ◽  
LOUISE PHILLIPS ◽  
PATRICK F. NAISH ◽  
GAVIN I. RUSSELL

Abstract. Peritoneal solute transport increases with time on treatment in a proportion of peritoneal dialysis (PD) patients, contributing to ultrafiltration failure. Continuous exposure of the peritoneum to hypertonic glucose solutions results in morphologic damage that may have a causative role in changes in peritoneal function. The purpose of this analysis was to establish whether increased exposure to glucose preceded changes in solute transport in a selected group of long-term PD patients. Peritoneal solute transport, residual renal function, peritonitis rate, and peritoneal exposure to glucose were recorded prospectively in a cohort of 303 patients at a single dialysis center. A subgroup of individuals, treated continuously for 5 yr, were identified and defined retrospectively as having either stable or increasing transport status. Of the 22 patients who were treated continuously for 5 yr, 13 had stable solute transport (solute transport at start, 0.67 [±0.1]; at 5 yr, 0.67 [±0.1]), whereas 9 had a sustained increase (solute transport at start, 0.56 [±0.08]; at 5 yr, 0.77 [±0.09]). Compared with the stable patients, those with increasing transport had earlier loss in residual renal function and were exposed to significantly more hypertonic glucose during the first 2 yr of treatment that preceded the increase in solute transport. This was associated with greater achieved ultrafiltration compensating for the reduced urinary volumes in these patients. Further increases in glucose exposure were observed as solute transport continued to rise. Peritonitis, including severity of infection and causative organism, was similar in both groups. In this selected group of long-term survivors on PD, an increase in solute transport with time was preceded by increased peritoneal exposure to hypertonic glucose. This is supportive evidence that hypertonic glucose may play a causative role in alterations in peritoneal membrane function.


2006 ◽  
Vol 26 (2) ◽  
pp. 136-143 ◽  
Author(s):  
Hidetomo Nakamoto ◽  
Yoshindo Kawaguchi ◽  
Hiromichi Suzuki

Technique failure resulting in transfer to hemodialysis (HD) remains one of the most important challenges in long-term peritoneal dialysis (PD). In general, the proportion of patients transferring from PD to HD is much greater than the proportion transferring from HD to PD. However, technique failure rates differ considerably between and within countries. The question arises as to how technique failure rates in Japan compare with those in other countries. To address this issue, we reviewed the literature and our experience of 139 incident continuous ambulatory peritoneal dialysis (CAPD) patients from January 1995 to December 1999. Based on our review, we estimate that the 5-year technique survival rate in Japanese CAPD patients is approximately 70%, and that technique failure rate is around 7% per year. This rate is significantly lower than that in many other countries. The most common reasons for technique failure in Japan are peritoneal membrane failure, ultrafiltration loss, and inadequate dialysis. Another factor contributing to the low technique failure rate in Japan is an extremely low peritonitis rate. This may be related to good sanitation and excellent PD training programs. Peritoneal membrane failure continues to be the major challenge for long-term technique survival on PD in Japan.


Sign in / Sign up

Export Citation Format

Share Document