scholarly journals CO2 Abatement in the Steel Industry through Carbon Recycle and Electrification by Means of Advanced Polymer Membranes

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 856
Author(s):  
Marija Sarić ◽  
Jan Wilco Dijkstra ◽  
Yvonne C. van Delft

The potential of advanced polymer or hybrid polymer membranes to reduce CO2 emissions in steel production was evaluated. For this, a conceptual process design and assessment was performed for a process that is a combination of carbon recycling and electrification of the steel making process. The results indicate a CO2 avoidance of 9%. CO2 emissions were reduced by factor 1.78 when using renewable electricity according to the proposed scheme compared to feeding this renewable electricity to the electrical grid. The CO2 abatement potential of the studied concept is highly dependent on the CO2 conversion in the plasma torch. If CO2 conversion in the plasma torch could be increased from 84.4% to 95.0%, the overall CO2 avoidance could be further increased to 16.5%, which is comparable to the values reported for the top gas recycling blast furnace. In this case, the CO2 emissions reduction achieved when using renewable electricity in the proposed scheme compared to using the same electricity in the electrical grid increases a factor from 1.78 to 3.27.

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1654
Author(s):  
Sethu Prasanth Shanmugam ◽  
Viswanathan N. Nurni ◽  
Sambandam Manjini ◽  
Sanjay Chandra ◽  
Lauri E. K. Holappa

In FY-20, India’s steel production was 109 MT, and it is the second-largest steel producer on the planet, after China. India’s per capita consumption of steel was around 75 kg, which has risen from 59 kg in FY-14. Despite the increase in consumption, it is much lower than the average global consumption of 230 kg. The per capita consumption of steel is one of the strongest indicators of economic development across the nation. Thus, India has an ambitious plan of increasing steel production to around 250 MT and per capita consumption to around 160 kg by the year 2030. Steel manufacturers in India can be classified based on production routes as (a) oxygen route (BF/BOF route) and (b) electric route (electric arc furnace and induction furnace). One of the major issues for manufacturers of both routes is the availability of raw materials such as iron ore, direct reduced iron (DRI), and scrap. To achieve the level of 250 MT, steel manufacturers have to focus on improving the current process and product scenario as well as on research and development activities. The challenge to stop global warming has forced the global steel industry to strongly cut its CO2 emissions. In the case of India, this target will be extremely difficult by ruling in the production duplication planned by the year 2030. This work focuses on the recent developments of various processes and challenges associated with them. Possibilities and opportunities for improving the current processes such as top gas recycling, increasing pulverized coal injection, and hydrogenation as well as the implementation of new processes such as HIsarna and other CO2-lean iron production technologies are discussed. In addition, the eventual transition to hydrogen ironmaking and “green” electricity in smelting are considered. By fast-acting improvements in current facilities and brave investments in new carbon-lean technologies, the CO2 emissions of the Indian steel industry can peak and turn downward toward carbon-neutral production.


Author(s):  
Taewook Huh ◽  
Yun Young Kim

This study analyzes how the three pillars of sustainable development (economic growth, social justice, and environmental protection) have influenced each other for the past twenty-six years (from 1987 to 2013). The relationship between the triangular pillar of SD can be characterized by “ecological modernization”, “eco-socialism”, and the traditional debate between growth and distribution. This paper examined the correlation analysis of the nine representative variables in the three categories, adopting the cases of twenty-six OECD countries. In particular, the panel analysis (PCSE models) was conducted to identify the seven independent determinants affecting both response (dependent) variables and environmental factors (“CO2 emissions” and “renewable electricity output”). In short, during the entire period, the findings reveal that all economic and social variables did not have a positive impact on reducing CO2 emissions. However, the variables of “employment in industry” and “social expenditure” are effected by the increase of renewable electricity output. Consequently, highlighting the detailed findings different for each set period (1987–2013, 1987–2002, and 2003–2013), this study suggests the implications of the analysis result in the light of the theories of ecological modernization and eco-socialism.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3840
Author(s):  
Alla Toktarova ◽  
Ida Karlsson ◽  
Johan Rootzén ◽  
Lisa Göransson ◽  
Mikael Odenberger ◽  
...  

The concept of techno-economic pathways is used to investigate the potential implementation of CO2 abatement measures over time towards zero-emission steelmaking in Sweden. The following mitigation measures are investigated and combined in three pathways: top gas recycling blast furnace (TGRBF); carbon capture and storage (CCS); substitution of pulverized coal injection (PCI) with biomass; hydrogen direct reduction of iron ore (H-DR); and electric arc furnace (EAF), where fossil fuels are replaced with biomass. The results show that CCS in combination with biomass substitution in the blast furnace and a replacement primary steel production plant with EAF with biomass (Pathway 1) yield CO2 emission reductions of 83% in 2045 compared to CO2 emissions with current steel process configurations. Electrification of the primary steel production in terms of H-DR/EAF process (Pathway 2), could result in almost fossil-free steel production, and Sweden could achieve a 10% reduction in total CO2 emissions. Finally, (Pathway 3) we show that increased production of hot briquetted iron pellets (HBI), could lead to decarbonization of the steel industry outside Sweden, assuming that the exported HBI will be converted via EAF and the receiving country has a decarbonized power sector.


Energy Policy ◽  
2018 ◽  
Vol 113 ◽  
pp. 356-367 ◽  
Author(s):  
Daniel Balsalobre-Lorente ◽  
Muhammad Shahbaz ◽  
David Roubaud ◽  
Sahbi Farhani

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 361 ◽  
Author(s):  
Rubén Rodríguez-Alegre ◽  
Alba Ceballos-Escalera ◽  
Daniele Molognoni ◽  
Pau Bosch-Jimenez ◽  
David Galí ◽  
...  

Anaerobic digestion of sewage sludge produces large amounts of CO2 which contribute to global CO2 emissions. Capture and conversion of CO2 into valuable products is a novel way to reduce CO2 emissions and valorize it. Membrane contactors can be used for CO2 capture in liquid media, while bioelectrochemical systems (BES) can valorize dissolved CO2 converting it to CH4, through electromethanogenesis (EMG). At the same time, EMG process, which requires electricity to drive the conversion, can be utilized to store electrical energy (eventually coming from renewables surplus) as methane. The study aims integrating the two technologies at a laboratory scale, using for the first time real wastewater as CO2 capture medium. Five replicate EMG-BES cells were built and operated individually at 0.7 V. They were fed with both synthetic and real wastewater, saturated with CO2 by membrane contactors. In a subsequent experimental step, four EMG-BES cells were electrical stacked in series while one was kept as reference. CH4 production reached 4.6 L CH4 m−2 d−1, in line with available literature data, at a specific energy consumption of 16–18 kWh m−3 CH4 (65% energy efficiency). Organic matter was removed from wastewater at approximately 80% efficiency. CO2 conversion efficiency was limited (0.3–3.7%), depending on the amount of CO2 injected in wastewater. Even though achieved performances are not yet competitive with other mature methanation technologies, key knowledge was gained on the integrated operation of membrane contactors and EMG-BES cells, setting the base for upscaling and future implementation of the technology.


2018 ◽  
Vol 8 (7) ◽  
pp. 621-625 ◽  
Author(s):  
Greg H. Rau ◽  
Heather D. Willauer ◽  
Zhiyong Jason Ren

1996 ◽  
Vol 37 (6-8) ◽  
pp. 1333-1338 ◽  
Author(s):  
N. Hasegawa ◽  
T. Yoshida ◽  
M. Tsuji ◽  
Y. Tamaura

Sign in / Sign up

Export Citation Format

Share Document